On fractional (p, q)-Laplacian equations involving subcritical or critical Hardy exponents

被引:0
作者
Zi-an Fan
机构
[1] Hubei Engineering University,School of Mathematics and Statistics
来源
Journal of Pseudo-Differential Operators and Applications | 2022年 / 13卷
关键词
Fractional (; , ; )-Laplacian equations; Variational methods; Nehari manifold; Critical Hardy nonlinearities; 35J20; 35R11; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study one fractional (p, q)-Laplacian equations with subcritical or critical Hardy exponents. We obtain some existence results using variational methods and Nehari manifold under two different cases.
引用
收藏
相关论文
共 52 条
[1]  
Ambrosio V(2020)Fractional p-q Laplacian problems in Z. Anal. Anwend. 39 289-314
[2]  
Ambrosio V(2018) with critical growth Mediterr. J. Math. 15 1-17
[3]  
Isernia T(2019)On a fractional p-q Laplacian problem with critical Sobolev CHardy exponents Adv. Differ. Equ. 24 185-228
[4]  
Bhakta M(1983)Multiplicity results for Proc. AMS 88 486-490
[5]  
Mukherjee D(2003) fractional elliptic equations involving critical nonlinearities J. Differ. Equ. 193 481-499
[6]  
Brezis H(2015)A relation between pointwise convergence of functions and convergence of functionals Nonlinear Differ. Equ. Appl. 22 1959-1972
[7]  
Lieb E(2018)The Nehari manifold for a semilinear elliptic problem with a sign changing weight function J. Funct. Anal. 275 3065-3114
[8]  
Brown K(2017)On a class of critical Nonlinear Anal. RWA. 36 89-100
[9]  
Zhang Y(2019)-Laplacian problems Nonlinear Anal. 186 6-32
[10]  
Candito P(2018)Nonlocal problems with critical Hardy nonlinearity Chin. Ann. Math. Ser. B 39 357-372