Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.)

被引:0
|
作者
Yashwant K. Yadava
Pooja Chaudhary
Sheel Yadav
Aqeel Hasan Rizvi
Tapan Kumar
Rachna Srivastava
K. R. Soren
C. Bharadwaj
R. Srinivasan
N. K. Singh
P. K. Jain
机构
[1] ICAR-National Institute for Plant Biotechnology,Division of Genetics
[2] ICAR-Indian Agricultural Research Institute,undefined
[3] ICAR-Indian Institute of Pulses Research,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Elucidation of the genetic basis of drought tolerance is vital for genomics-assisted breeding of drought tolerant crop varieties. Here, we used genotyping-by-sequencing (GBS) to identify single nucleotide polymorphisms (SNPs) in recombinant inbred lines (RILs) derived from a cross between a drought tolerant chickpea variety, Pusa 362 and a drought sensitive variety, SBD 377. The GBS identified a total of 35,502 SNPs and subsequent filtering of these resulted in 3237 high-quality SNPs included in the eight linkage groups. Fifty-one percent of these SNPs were located in the genic regions distributed throughout the genome. The high density linkage map has total map length of 1069 cm with an average marker interval of 0.33 cm. The linkage map was used to identify 9 robust and consistent QTLs for four drought related traits viz. membrane stability index, relative water content, seed weight and yield under drought, with percent variance explained within the range of 6.29%–90.68% and LOD scores of 2.64 to 6.38, which were located on five of the eight linkage groups. A genomic region on LG 7 harbors quantitative trait loci (QTLs) explaining > 90% phenotypic variance for membrane stability index, and > 10% PVE for yield. This study also provides the first report of major QTLs for physiological traits such as membrane stability index and relative water content for drought stress in chickpea. A total of 369 putative candidate genes were identified in the 6.6 Mb genomic region spanning these QTLs. In-silico expression profiling based on the available transcriptome data revealed that 326 of these genes were differentially expressed under drought stress. KEGG analysis resulted in reduction of candidate genes from 369 to 99, revealing enrichment in various signaling pathways. Haplotype analysis confirmed 5 QTLs among the initially identified 9 QTLs. Two QTLs, qRWC1.1 and qYLD7.1, were chosen based on high SNP density. Candidate gene-based analysis revealed distinct haplotypes in qYLD7.1 associated with significant phenotypic differences, potentially linked to pathways for secondary metabolite biosynthesis. These identified candidate genes bolster defenses through flavonoids and phenylalanine-derived compounds, aiding UV protection, pathogen resistance, and plant structure.The study provides novel genomic regions and candidate genes which can be utilized in genomics-assisted breeding of superior drought tolerant chickpea cultivars.
引用
收藏
相关论文
共 50 条
  • [1] Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.)
    Yadava, Yashwant K.
    Chaudhary, Pooja
    Yadav, Sheel
    Rizvi, Aqeel Hasan
    Kumar, Tapan
    Srivastava, Rachna
    Soren, K. R.
    Bharadwaj, C.
    Srinivasan, R.
    Singh, N. K.
    Jain, P. K.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Genetic mapping of QTLs for drought tolerance in chickpea (Cicer arietinum L.)
    Kushwah, Ashutosh
    Bhatia, Dharminder
    Barmukh, Rutwik
    Singh, Inderjit
    Singh, Gurpreet
    Bindra, Shayla
    Vij, Suruchi
    Chellapilla, Bharadwaj
    Pratap, Aditya
    Roorkiwal, Manish
    Kumar, Shiv
    Varshney, Rajeev K.
    Singh, Sarvjeet
    FRONTIERS IN GENETICS, 2022, 13
  • [3] Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)
    Rajeev K. Varshney
    Mahendar Thudi
    Spurthi N. Nayak
    Pooran M. Gaur
    Junichi Kashiwagi
    Lakshmanan Krishnamurthy
    Deepa Jaganathan
    Jahnavi Koppolu
    Abhishek Bohra
    Shailesh Tripathi
    Abhishek Rathore
    Aravind K. Jukanti
    Veera Jayalakshmi
    Anilkumar Vemula
    S. J. Singh
    Mohammad Yasin
    M. S. Sheshshayee
    K. P. Viswanatha
    Theoretical and Applied Genetics, 2014, 127 : 445 - 462
  • [4] Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)
    Varshney, Rajeev K.
    Thudi, Mahendar
    Nayak, Spurthi N.
    Gaur, Pooran M.
    Kashiwagi, Junichi
    Krishnamurthy, Lakshmanan
    Jaganathan, Deepa
    Koppolu, Jahnavi
    Bohra, Abhishek
    Tripathi, Shailesh
    Rathore, Abhishek
    Jukanti, Aravind K.
    Jayalakshmi, Veera
    Vemula, Anilkumar
    Singh, S. J.
    Yasin, Mohammad
    Sheshshayee, M. S.
    Viswanatha, K. P.
    THEORETICAL AND APPLIED GENETICS, 2014, 127 (02) : 445 - 462
  • [5] Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.)
    Maqbool, Muhammad Amir
    Aslam, Muhammad
    Ali, Hina
    PLANT BREEDING, 2017, 136 (03) : 300 - 318
  • [6] Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.)
    Abbo, S
    Molina, C
    Jungmann, R
    Grusak, MA
    Berkovitch, Z
    Reifen, R
    Kahl, G
    Winter, P
    Reifen, R
    THEORETICAL AND APPLIED GENETICS, 2005, 111 (02) : 185 - 195
  • [7] Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.)
    S. Abbo
    C. Molina
    R. Jungmann
    M. A. Grusak
    Z. Berkovitch
    Ruth Reifen
    G. Kahl
    P. Winter
    R. Reifen
    Theoretical and Applied Genetics, 2005, 111 : 185 - 195
  • [8] Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance
    Ganjeali, Ali
    Porsa, Hassan
    Bagheri, Abdolreza
    AGRICULTURAL WATER MANAGEMENT, 2011, 98 (09) : 1477 - 1484
  • [9] QTL mapping for heat stress tolerance in chickpea (Cicer arietinum L.)
    Jha, Uday Chand
    Kole, Paresh Chandra
    Singh, Narendra Pratap
    LEGUME RESEARCH, 2021, 44 (04) : 382 - 387
  • [10] Genetic relationships among chickpea (Cicer arietinum L.) genotypes based on the SSRs at the quantitative trait Loci for resistance to ascochyta blight
    Tar'an, B.
    Warkentin, T.
    Tullu, A.
    Vandenberg, A.
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2007, 119 (01) : 39 - 51