Self-similar approximants of the permeability in heterogeneous porous media from moment equation expansions

被引:0
作者
Simon Gluzman
Didier Sornette
机构
[1] University of California Los Angeles,Institute of Geophysics and Planetary Physics
[2] UCLA,Department of Earth and Space Sciences
[3] Université de Nice-Sophia Antipolis,Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622
[4] ETH Zurich,Department of Management, Technology and Economics
来源
Transport in Porous Media | 2008年 / 71卷
关键词
Hydraulic permeability; Heterogeneous porous media; Moment equation expansions; Renormalization; Self-similarity;
D O I
暂无
中图分类号
学科分类号
摘要
We use a mathematical technique, the self-similar functional renormalization, to construct formulas for the average conductivity that apply for large heterogeneity, based on perturbative expansions in powers of a small parameter, usually the log-variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{Y}^2$$\end{document} of the local conductivity. Using perturbation expansions up to third order and fourth order in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{Y}^2$$\end{document} obtained from the moment equation approach, we construct the general functional dependence of the scalar hydraulic conductivity in the regime where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{Y}^2$$\end{document} is of order 1 and larger than 1. Comparison with available numerical simulations show that the proposed method provides reasonable improvements over available expansions.
引用
收藏
页码:75 / 97
页数:22
相关论文
共 59 条
[1]  
Abramovich B.(1995)Effective permittivity of log-normal isotropic random media J. Phys. A 28 693-700
[2]  
Indelman P.(1993)Higher-order correction of effective conductivity in heterogeneous formations of lognormal conductivity distribution Transp. Porous Media 12 279-290
[3]  
Dagan G.(1995)Correlation structure dependence of the effective permeability of heterogeneous porous media Phys. Fluids 7 2553-2562
[4]  
De Wit A.(1992)Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach 2. Results Water Resour. Res. 28 1167-1178
[5]  
Dykaar B.(1987)Transport properties of continuum systems near the percolation threshold Phys. Rev. B 35 197-214
[6]  
Kitanidis P.(1997)Algebraic self-similar renormalization in theory of critical phenomena Phys. Rev. E 55 3983-3999
[7]  
Feng S.(1998)Unified approach to crossover phenomena Phys. Rev. E 58 4197-4209
[8]  
Halperin B.I.(2002)Classification of possible finite-time singularities by functional renormalization Phys. Rev. E 6601 U315-U328
[9]  
Sen P.N.(2003)Reconstructing generalized exponential laws by self-similar exponential approximants Int. J. Modern Phys. C 14 509-528
[10]  
Gluzman S.(1999)Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains, 2, computational examples Water Resour. Res. 35 3019-3039