Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes

被引:0
作者
Simeon Ball
Szabolcs L. Fancsali
机构
[1] Universitat Politecnica de Catalunya,
[2] Eötvös Loránd University,undefined
来源
Designs, Codes and Cryptography | 2009年 / 53卷
关键词
Linear codes; Griesmer bound; Multiple blocking sets; Minihypers; 51E21; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Belov, Logachev and Sandimirov construct linear codes of minimum distance d for roughly 1/qk/2 of the values of d < qk-1. In this article we shall prove that, for q = p prime and roughly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{8}}$$\end{document}-th’s of the values of d < qk-1, there is no linear code meeting the Griesmer bound. This result uses Blokhuis’ theorem on the size of a t-fold blocking set in PG(2, p), p prime, which we generalise to higher dimensions. We also give more general lower bounds on the size of a t-fold blocking set in PG(δ, q), for arbitrary q and δ ≥ 3. It is known that from a linear code of dimension k with minimum distance d < qk-1 that meets the Griesmer bound one can construct a t-fold blocking set of PG(k−1, q). Here, we calculate explicit formulas relating t and d. Finally we show, using the generalised version of Blokhuis’ theorem, that nearly all linear codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb F}_p}$$\end{document} of dimension k with minimum distance d < qk-1, which meet the Griesmer bound, have codewords of weight at least d + p in subcodes, which contain codewords satisfying certain hypotheses on their supports.
引用
收藏
页码:119 / 136
页数:17
相关论文
共 16 条
  • [1] Ball S.(1996)Multiple blocking sets and arcs in finite planes J. London Math. Soc. 54 581-593
  • [2] Ball S.(2000)On intersection sets in Desarguesian affine spaces Eur. J. Combin. 21 441-446
  • [3] Blokhuis A.(1994)On the size of a blocking set in Combinatorica 14 111-114
  • [4] Blokhuis A.(2007)(2, Adv. Geom. 7 39-53
  • [5] Lovász L.(1999)) J. London Math. Soc. 60 321-332
  • [6] Storme L.(1992)On multiple blocking sets in Galois-planes J. Combin. Theory A 60 19-33
  • [7] Szőnyi T.(2007)Lacunary polynomials, multiple blocking sets and Baer-subplanes Des. Codes Cryptogr. 43 123-135
  • [8] Blokhuis A.(1993)Polynomial multiplicities over finite fields and intersection sets Discrete Math. 116 229-268
  • [9] Storme L.(2001)On the minimum length of some linear codes J. Combin. Theory A 95 88-101
  • [10] Szőnyi T.(undefined)A characterization of some [ undefined undefined undefined-undefined