Deep learning for named entity recognition: a survey

被引:2
|
作者
Hu Z. [1 ]
Hou W. [1 ]
Liu X. [1 ]
机构
[1] School of Artificial Intelligence, Henan University, Zhengzhou
来源
Neural Comput. Appl. | / 16卷 / 8995-9022期
基金
中国国家自然科学基金;
关键词
Deep learning; Named entity recognition; Natural language processing; Unstructured text;
D O I
10.1007/s00521-024-09646-6
中图分类号
学科分类号
摘要
Named entity recognition (NER) aims to identify the required entities and their types from unstructured text, which can be utilized for the construction of knowledge graphs. Traditional methods heavily rely on manual feature engineering and face challenges in adapting to large datasets within complex linguistic contexts. In recent years, with the development of deep learning, a plethora of NER methods based on deep learning have emerged. This paper begins by providing a succinct introduction to the definition of the problem and the limitations of traditional methods. It enumerates commonly used NER datasets suitable for deep learning methods and categorizes them into three classes based on the complexity of named entities. Then, some typical deep learning-based NER methods are summarized in detail according to the development history of deep learning models. Subsequently, an in-depth analysis and comparison of methods achieving outstanding performance on representative and widely used datasets is conducted. Furthermore, the paper reproduces and analyzes the recognition results of some typical models on three different types of typical datasets. Finally, the paper concludes by offering insights into the future trends of NER development. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
引用
收藏
页码:8995 / 9022
页数:27
相关论文
共 50 条
  • [1] A Survey on Deep Learning for Named Entity Recognition
    Li, Jing
    Sun, Aixin
    Han, Jianglei
    Li, Chenliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 50 - 70
  • [2] Deep Learning Architectures for Named Entity Recognition: A Survey
    Thomas, Anu
    Sangeetha, S.
    ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, 2020, 1082 : 215 - 225
  • [3] Survey on Chinese named entity recognition with deep learning
    Kang Y.
    Sun L.
    Zhu R.
    Li M.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (11): : 44 - 53
  • [4] Bengali Named Entity Recognition: A survey with deep learning benchmark
    Rifat, Md Jamiur Rahman
    Abujar, Sheikh
    Noori, Sheak Rashed Haider
    Hossain, Syed Akhter
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [5] A Survey of Deep Learning for Named Entity Recognition in Chinese Social Media
    Liu, Jingxin
    Cheng, Jieren
    Wang, Ziyan
    Lou, Congqiang
    Shen, Chenli
    Sheng, Victor S.
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 573 - 582
  • [6] Named entity recognition based on deep learning
    Ji Z.
    Kong D.
    Liu W.
    Dong W.
    Sang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (06): : 1603 - 1615
  • [7] Turkish Named Entity Recognition with Deep Learning
    Gunes, Asim
    Tantug, A. Cuneyd
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [8] A Deep Learning Solution to Named Entity Recognition
    Murthy, V. Rudra
    Bhattacharyya, Pushpak
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT I, 2018, 9623 : 427 - 438
  • [9] Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison
    Song, Bosheng
    Li, Fen
    Liu, Yuansheng
    Zeng, Xiangxiang
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [10] Named Entity Recognition for Amharic Using Deep Learning
    Gamback, Bjorn
    Sikdar, Utpal Kumar
    2017 IST-AFRICA WEEK CONFERENCE (IST-AFRICA), 2017,