Counting Colorings of a Regular Graph

被引:0
|
作者
David Galvin
机构
[1] University of Notre Dame,Department of Mathematics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Proper coloring; Enumeration; Regular graph; Primary 05C15; Secondary 05A16;
D O I
暂无
中图分类号
学科分类号
摘要
At most how many (proper) q-colorings does a regular graph admit? Galvin and Tetali conjectured that among all n-vertex, d-regular graphs with 2d|n, none admits more q-colorings than the disjoint union of n/2d copies of the complete bipartite graph Kd,d. In this note we give asymptotic evidence for this conjecture, showing that for each q ≥  3 the number of proper q-colorings admitted by an n-vertex, d-regular graph is at most (q2/4)n2qq/2n(1+o(1))2difqiseven((q2-1)/4)n2q+1(q+1)/2n(1+o(1))2difqisodd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{ll}(q^2/4)^\frac{n}{2}\binom{q}{q/2}^\frac{n(1+o(1))}{2d} &{\rm if}\; q \; {\rm is}\; {\rm even}\\((q^2-1)/4)^\frac{n}{2}\binom{q+1}{(q+1)/2}^\frac{n(1+o(1))}{2d} & {\rm if}\; q\; {\rm is}\; {\rm odd,}\end{array}$$\end{document}where o(1)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${o(1)\rightarrow 0}$$\end{document} as d→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d \rightarrow \infty}$$\end{document} ; these bounds agree up to the o(1) terms with the counts of q-colorings of n/2d copies of Kd,d. Along the way we obtain an upper bound on the number of colorings of a regular graph in terms of its independence number. For example, we show that for all even q ≥  4 and fixed ɛ >  0 there is δ=δ(ε,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta=\delta(\varepsilon,q)}$$\end{document} such that the number of proper q-colorings admitted by an n-vertex, d-regular graph with no independent set of size n(1-ε)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(1-\varepsilon)/2}$$\end{document} is at most (q2/4-δ)n2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q^2/4-\delta)^\frac{n}{2},$$\end{document}with an analogous result for odd q.
引用
收藏
页码:629 / 638
页数:9
相关论文
共 50 条
  • [1] Counting Colorings of a Regular Graph
    Galvin, David
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 629 - 638
  • [2] Maximizing H-Colorings of a Regular Graph
    Galvin, David
    JOURNAL OF GRAPH THEORY, 2013, 73 (01) : 66 - 84
  • [3] Correlation decay and deterministic FPTAS for counting colorings of a graph
    Gamarnik, David
    Katz, Dmitriy
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 12 : 29 - 47
  • [4] Counting the number of non-equivalent vertex colorings of a graph
    Hertz, Alain
    Melot, Hadrien
    DISCRETE APPLIED MATHEMATICS, 2016, 203 : 62 - 71
  • [5] Correlation decay and deterministic FPTAS for counting list-colorings of a graph
    Gamarnik, David
    Katz, Dmitriy
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 1245 - 1254
  • [6] REGULAR COLORINGS IN REGULAR GRAPHS
    Bernshteyn, Anton
    Khormali, Omid
    Martin, Ryan R.
    Rollin, Jonathan
    Rorabaugh, Danny
    Shan, Songling
    Uzzell, Andrew J.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 795 - 806
  • [7] On Counting Generalized Colorings
    Kotek, T.
    Makowsky, J. A.
    Zilber, B.
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 339 - +
  • [8] On Counting Generalized Colorings
    Kotek, Tomer
    Makowsky, Johann A.
    Zilber, Boris
    MODEL THEORETIC METHODS IN FINITE COMBINATORICS, 2011, 558 : 207 - +
  • [9] Graph colorings
    Nesetril, J
    Woeginger, G
    THEORETICAL COMPUTER SCIENCE, 2005, 349 (01) : 1 - 1
  • [10] REGULAR AND CANONICAL COLORINGS
    DEWERRA, D
    DISCRETE MATHEMATICS, 1979, 27 (03) : 309 - 316