A high-order and extra-dof-free generalized finite element method for time-fractional diffusion equation

被引:0
|
作者
Yi Yang
Jin Huang
Hu Li
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
[2] Chengdu Normal University,School of Mathematics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Fractional diffusion equation; Partition of unity; Extra-dof-free GFEM; Stability; Convergence; 35B35; 35B45; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a spatial high-order and extra-dof-free generalized finite element method (GFEM), which is based on partition of unity, is investigated for solving a class of fractional diffusion equations. An L1 scheme is used for time discretization. To resort to orthogonal projection, we first derive the error estimate of stationary problem by a local interpolation operator. Then we further study the well-posedness, stability and convergence of a discrete scheme of time-fractional diffusion problem. The offered numerical scheme demonstrates O(Δt1+δ-α+hk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\Delta t^{1+\delta -\alpha }+h^{k})$$\end{document} convergence rates, where α∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \left( 0,1\right) $$\end{document}, 0≤δ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1$$\end{document} and k is 3, 4, 5. Finally, ample numerical examples are given to illustrate our theoretical achievements.
引用
收藏
相关论文
共 50 条
  • [41] Central discontinuous Galerkin finite element method for the time-fractional convection equation in two space dimensions
    Li, Dongxia
    IFAC PAPERSONLINE, 2024, 58 (12): : 83 - 88
  • [42] High-Order Methods for Systems of Fractional Ordinary Differential Equations and Their Application to Time-Fractional Diffusion Equations
    Ferras, Luis L.
    Ford, Neville
    Morgado, Maria Luisa
    Rebelo, Magda
    MATHEMATICS IN COMPUTER SCIENCE, 2021, 15 (04) : 535 - 551
  • [43] An iterative method for an inverse source problem of time-fractional diffusion equation
    Wang, Jun-Gang
    Ran, Yu-Hong
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (10) : 1509 - 1521
  • [44] SUPERCONVERGENCE ANALYSIS FOR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NONCONFORMING MIXED FINITE ELEMENT METHOD
    Zhang, Houchao
    Shi, Dongyang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 488 - 505
  • [45] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Seal, Aniruddha
    Natesan, Srinivasan
    Toprakseven, Suayip
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
  • [46] Higher order class of finite difference method for time-fractional Liouville-Caputo and space-Riesz fractional diffusion equation
    Irandoust-Pakchin, Safar
    Abdi-Mazraeh, Somaiyeh
    Fahimi-Khalilabad, Iraj
    FILOMAT, 2024, 38 (02) : 505 - 521
  • [47] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Aniruddha Seal
    Srinivasan Natesan
    Suayip Toprakseven
    Journal of Scientific Computing, 2024, 98
  • [48] A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation
    Li, Xiaoli
    Rui, Hongxing
    APPLIED NUMERICAL MATHEMATICS, 2018, 131 : 123 - 139
  • [49] An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy
    Cao, Junying
    Tan, Qing
    Wang, Zhongqing
    Wang, Ziqiang
    AIMS MATHEMATICS, 2023, 8 (07): : 16031 - 16061
  • [50] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) : 959 - 985