A high-order and extra-dof-free generalized finite element method for time-fractional diffusion equation

被引:0
|
作者
Yi Yang
Jin Huang
Hu Li
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
[2] Chengdu Normal University,School of Mathematics
来源
关键词
Fractional diffusion equation; Partition of unity; Extra-dof-free GFEM; Stability; Convergence; 35B35; 35B45; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a spatial high-order and extra-dof-free generalized finite element method (GFEM), which is based on partition of unity, is investigated for solving a class of fractional diffusion equations. An L1 scheme is used for time discretization. To resort to orthogonal projection, we first derive the error estimate of stationary problem by a local interpolation operator. Then we further study the well-posedness, stability and convergence of a discrete scheme of time-fractional diffusion problem. The offered numerical scheme demonstrates O(Δt1+δ-α+hk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\Delta t^{1+\delta -\alpha }+h^{k})$$\end{document} convergence rates, where α∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \left( 0,1\right) $$\end{document}, 0≤δ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1$$\end{document} and k is 3, 4, 5. Finally, ample numerical examples are given to illustrate our theoretical achievements.
引用
收藏
相关论文
共 50 条
  • [31] A Directly Numerical Algorithm for a Backward Time-Fractional Diffusion Equation Based on the Finite Element Method
    Ruan, Zhousheng
    Wang, Zewen
    Zhang, Wen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [32] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985
  • [33] A high-order L2 type difference scheme for the time-fractional diffusion equation
    Alikhanov, Anatoly A.
    Huang, Chengming
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [34] A mixed finite element method for a time-fractional fourth-order partial differential equation
    Liu, Yang
    Fang, Zhichao
    Li, Hong
    He, Siriguleng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 703 - 717
  • [35] A high-order space-time spectral method for the distributed-order time-fractional telegraph equation
    Derakhshan, M. H.
    Kumar, Pushpendra
    Salahshour, Soheil
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) : 2778 - 2794
  • [36] Finite Difference/Collocation Method for a Generalized Time-Fractional KdV Equation
    Cao, Wen
    Xu, Yufeng
    Zheng, Zhoushun
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [37] The solution of the time-fractional diffusion equation by the generalized differential transform method
    Cetinkaya, Aysegul
    Kiymaz, Onur
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2349 - 2354
  • [38] THE REVISED GENERALIZED TIKHONOV METHOD FOR THE BACKWARD TIME-FRACTIONAL DIFFUSION EQUATION
    Deiveegan, Arumugam
    Nieto, Juan J.
    Prakash, Periasamy
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01): : 45 - 56
  • [39] On high-order compact schemes for the multidimensional time-fractional Schrodinger equation
    Eskar, Rena
    Feng, Xinlong
    Kasim, Ehmet
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] A Galerkin finite element method for time-fractional stochastic heat equation
    Zou, Guang-an
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 4135 - 4150