A high-order and extra-dof-free generalized finite element method for time-fractional diffusion equation

被引:0
|
作者
Yi Yang
Jin Huang
Hu Li
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
[2] Chengdu Normal University,School of Mathematics
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Fractional diffusion equation; Partition of unity; Extra-dof-free GFEM; Stability; Convergence; 35B35; 35B45; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a spatial high-order and extra-dof-free generalized finite element method (GFEM), which is based on partition of unity, is investigated for solving a class of fractional diffusion equations. An L1 scheme is used for time discretization. To resort to orthogonal projection, we first derive the error estimate of stationary problem by a local interpolation operator. Then we further study the well-posedness, stability and convergence of a discrete scheme of time-fractional diffusion problem. The offered numerical scheme demonstrates O(Δt1+δ-α+hk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\Delta t^{1+\delta -\alpha }+h^{k})$$\end{document} convergence rates, where α∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \left( 0,1\right) $$\end{document}, 0≤δ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1$$\end{document} and k is 3, 4, 5. Finally, ample numerical examples are given to illustrate our theoretical achievements.
引用
收藏
相关论文
共 50 条
  • [31] Stabilizer-free weak Galerkin finite element method with second-order accuracy in time for the time fractional diffusion equation
    Ma, Jie
    Gao, Fuzheng
    Du, Ning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414
  • [32] Optimal spatial H1-norm analysis of a finite element method for a time-fractional diffusion equation
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [33] A High-Order L1-2 Scheme Based on Compact Finite Difference Method for the Nonlinear Time-Fractional Schrodinger Equation
    Zhang, Yuting
    Qian, Lingzhi
    ENGINEERING LETTERS, 2023, 31 (04) : 1592 - 1597
  • [34] A Time-Fractional Diffusion Equation with Generalized Memory Kernel in Differential and Difference Settings with Smooth Solutions
    Alikhanov, Anatoly A.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 647 - 660
  • [35] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [36] THE USE OF FINITE DIFFERENCE/ELEMENT APPROACHES FOR SOLVING THE TIME-FRACTIONAL SUBDIFFUSION EQUATION
    Zeng, Fanhai
    Li, Changpin
    Liu, Fawang
    Turner, Ian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : A2976 - A3000
  • [37] Numerical solution of nonlinear time-fractional Cable equation by finite volume element method
    Yazdani, A.
    Yousefian, R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 55 - 69
  • [38] A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation
    Zeng, Fanhai
    Li, Changpin
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 82 - 95
  • [39] Numerical methods for time-fractional convection-diffusion problems with high-order accuracy
    Dong, Gang
    Guo, Zhichang
    Yao, Wenjuan
    OPEN MATHEMATICS, 2021, 19 (01): : 782 - 802
  • [40] TWO-GRID FINITE ELEMENT METHOD FOR TIME-FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Hu, Hanzhang
    Chen, Yanping
    Zhou, Jianwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 1124 - 1144