A high-order and extra-dof-free generalized finite element method for time-fractional diffusion equation

被引:0
|
作者
Yi Yang
Jin Huang
Hu Li
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
[2] Chengdu Normal University,School of Mathematics
来源
关键词
Fractional diffusion equation; Partition of unity; Extra-dof-free GFEM; Stability; Convergence; 35B35; 35B45; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a spatial high-order and extra-dof-free generalized finite element method (GFEM), which is based on partition of unity, is investigated for solving a class of fractional diffusion equations. An L1 scheme is used for time discretization. To resort to orthogonal projection, we first derive the error estimate of stationary problem by a local interpolation operator. Then we further study the well-posedness, stability and convergence of a discrete scheme of time-fractional diffusion problem. The offered numerical scheme demonstrates O(Δt1+δ-α+hk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\Delta t^{1+\delta -\alpha }+h^{k})$$\end{document} convergence rates, where α∈0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \left( 0,1\right) $$\end{document}, 0≤δ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \delta \le 1$$\end{document} and k is 3, 4, 5. Finally, ample numerical examples are given to illustrate our theoretical achievements.
引用
收藏
相关论文
共 50 条
  • [1] A high-order and extra-dof-free generalized finite element method for time-fractional diffusion equation
    Yang, Yi
    Huang, Jin
    Li, Hu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (07):
  • [2] An extra-dof-free generalized finite element method for incompressible Navier-Stokes equations
    Sheng, Wenhai
    Duan, Qinglin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 433
  • [3] A Novel High-Order Finite-Difference Method for the Time-Fractional Diffusion Equation with Smooth/Nonsmooth Solutions
    Ramezani, Mohadese
    Mokhtari, Reza
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3987 - 4013
  • [4] A Novel High-Order Finite-Difference Method for the Time-Fractional Diffusion Equation with Smooth/Nonsmooth Solutions
    Mohadese Ramezani
    Reza Mokhtari
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3987 - 4013
  • [5] A Weak Galerkin Finite Element Method for High Dimensional Time-fractional Diffusion Equation
    Wang, Xiuping
    Gao, Fuzheng
    Liu, Yang
    Sun, Zhengjia
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386 (386)
  • [6] β-Robust Superconvergent Analysis of a Finite Element Method for the Distributed Order Time-Fractional Diffusion Equation
    Huang, Chaobao
    Chen, Hu
    An, Na
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [7] A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    Agarwal, Ravi
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (10) : 2146 - 2175
  • [8] A high-order compact finite difference scheme and its analysis for the time-fractional diffusion equation
    Pradip Roul
    V. M. K. Prasad Goura
    Ravi Agarwal
    Journal of Mathematical Chemistry, 2023, 61 : 2146 - 2175
  • [9] A FAST HIGH ORDER METHOD FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Zhu, Hongyi
    Xu, Chuanju
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2829 - 2849
  • [10] HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION
    李景
    杨莹莹
    姜英军
    封利波
    郭柏灵
    ActaMathematicaScientia, 2021, 41 (03) : 801 - 826