In this paper, a spatial high-order and extra-dof-free generalized finite element method (GFEM), which is based on partition of unity, is investigated for solving a class of fractional diffusion equations. An L1 scheme is used for time discretization. To resort to orthogonal projection, we first derive the error estimate of stationary problem by a local interpolation operator. Then we further study the well-posedness, stability and convergence of a discrete scheme of time-fractional diffusion problem. The offered numerical scheme demonstrates O(Δt1+δ-α+hk)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {O}}(\Delta t^{1+\delta -\alpha }+h^{k})$$\end{document} convergence rates, where α∈0,1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha \in \left( 0,1\right) $$\end{document}, 0≤δ≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\le \delta \le 1$$\end{document} and k is 3, 4, 5. Finally, ample numerical examples are given to illustrate our theoretical achievements.