Finite Diagonal Random Matrices

被引:0
作者
Arup Bose
Sanchayan Sen
机构
[1] Indian Statistical Institute,Statistics and Mathematics Unit
[2] Courant Institute of Mathematical Sciences,undefined
来源
Journal of Theoretical Probability | 2013年 / 26卷
关键词
Tridiagonal and finite diagonal matrices; Sample covariance type matrices; Limiting spectral distribution; Semicircle law; Free independence; 60B20; 60B10; 46L53; 46L54;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this article is to extend some results of Popescu (Probab. Theory Relat. Fields 144:179, 2009) in several directions. We establish the limiting spectral distribution (LSD) for r-diagonal matrices under reduced moment conditions compared to those required by Popescu. We also deal with the joint convergence of several sequences of such matrices. In particular, we show that there is a large class of such matrices where the joint limit is not free while the marginals are semicircular. We also consider matrices of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{n}X_{n}^{T}$\end{document} where Xn is a sequence of nonsymmetric r-diagonal random matrices and establish their limiting spectral distribution.
引用
收藏
页码:819 / 835
页数:16
相关论文
共 5 条
[1]  
Bai Z.D.(1999)Methodologies in spectral analysis of large dimensional random matrices: a review Stat. Sin. 9 611-677
[2]  
Bose A.(2010)Limiting spectral distribution of Ann. Inst. Henri Poincaré, B Calc. Probab. Stat. 46 677-707
[3]  
Gangopadhyay S.(2009)′ matrices Probab. Theory Relat. Fields 144 179-220
[4]  
Sen A.(undefined)General tridiagonal random matrix models, limiting distributions and fluctuations undefined undefined undefined-undefined
[5]  
Popescu Ionel(undefined)undefined undefined undefined undefined-undefined