Piecewise-Smooth Slow–Fast Systems

被引:0
|
作者
Paulo R. da Silva
Jaime R. de Moraes
机构
[1] UNESP – Univ Estadual Paulista,Departamento de Matemática – Instituto de Biociências Letras e Ciências Exatas
[2] Curso de Matemática – UEMS,undefined
关键词
Periodic solutions; Invariant manifolds; Singular perturbations; Slow and fast motions; 34C25; 34C45; 34D15; 70K70;
D O I
暂无
中图分类号
学科分类号
摘要
We deal with piecewise-smooth differential systems ż=X(z),z=(x,y)∈ℝ×ℝn−1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot {z}=X(z), z=(x,y)\in \mathbb {R}\times \mathbb {R}^{n-1},$\end{document} with switching occurring in a codimension one smooth surface Σ. A regularization of X is a 1-parameter family of smooth vector fields Xδ,δ > 0, satisfying that Xδ converges pointwise to X in ℝn∖Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{n}\setminus {\Sigma }$\end{document}, when δ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta \rightarrow 0$\end{document}. The regularized system ż=Xδ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot {z}=X^{\delta }(z)$\end{document} is a slow–fast system. We work with two known regularizations: the classical one proposed by Sotomayor and Teixeira and its generalization, using transition functions without imposing the monotonicity condition. Minimal sets of regularized systems are studied with tools of the geometric singular perturbation theory. Moreover, we analyzed the persistence of the sliding region of piecewise-smooth slow–fast systems by singular perturbations.
引用
收藏
页码:67 / 85
页数:18
相关论文
共 50 条
  • [1] Piecewise-Smooth Slow-Fast Systems
    da Silva, Paulo R.
    de Moraes, Jaime R.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (01) : 67 - 85
  • [2] Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems
    Kowalczyk, P.
    Glendinning, P.
    CHAOS, 2011, 21 (02)
  • [3] Slow-fast systems on algebraic varieties bordering piecewise-smooth dynamical systems
    Buzzi, Claudio A.
    da Silva, Paulo R.
    Teixeira, Marco A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (04): : 444 - 462
  • [4] Bifurcations in piecewise-smooth feedback systems
    Di Bernardo, M
    Garofalo, F
    Iannelli, L
    Vasca, F
    INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (16-17) : 1243 - 1259
  • [5] Operational Models for Piecewise-Smooth Systems
    Sogokon, Andrew
    Ghorbal, Khalil
    Johnson, Taylor T.
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2017, 16
  • [6] Synchronization of Networks of Piecewise-Smooth Systems
    Coraggio, Marco
    DeLellis, Pietro
    Hogan, S. John
    di Bernardo, Mario
    IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (04): : 653 - 658
  • [7] Complexity and chaos in piecewise-smooth dynamical systems
    Zhusubaliyev, ZT
    Soukhoterin, EA
    Mosekilde, E
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 1159 - 1164
  • [8] iLQR for Piecewise-Smooth Hybrid Dynamical Systems
    Kong, Nathan J.
    Council, George
    Johnson, Aaron M.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5374 - 5381
  • [9] Piecewise-smooth chebfuns
    Pachon, Ricardo
    Platte, Rodrigo B.
    Trefethen, Lloyd N.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 898 - 916
  • [10] Super-Explosion and Inverse Canard Explosion in a Piecewise-Smooth Slow–Fast Leslie–Gower Model
    Huiping Zhang
    Yuhua Cai
    Jianhe Shen
    Qualitative Theory of Dynamical Systems, 2024, 23