Bohr Type Inequalities for the Class of Self-Analytic Maps on the Unit Disk

被引:0
作者
Molla Basir Ahamed
Sabir Ahammed
机构
[1] Jadavpur University,Department of Mathematics
来源
Computational Methods and Function Theory | 2023年 / 23卷
关键词
Bounded analytic functions; Bohr inequality; Bohr–Rogosinski inequality; Schwarz–Pick lemma; Primary 30A10; 30H05; 30C35; Secondary 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
This article is devoted to sharp improvements of the classical Bohr inequality for the class B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {B} $$\end{document} of analytic self-maps defined on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {D} $$\end{document}. In addition, we prove a sharp result which is an improved version of the classical Bohr inequality replacing the initial coefficients |a0|,|a1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |a_0|, |a_1| $$\end{document} and |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |a_2| $$\end{document} in the majorant series by |f(z)|,|f′(z)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |f(z)|, |f^{\prime }(z)| $$\end{document} and |f″(z)|/2!\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |f^{\prime \prime }(z)|/2! $$\end{document} respectively.
引用
收藏
页码:789 / 806
页数:17
相关论文
共 100 条
  • [1] Ahamed MB(2021)Bohr radius for certain classes of close-to-convex harmonic mappings Anal. Math. Phys. 11 111-120
  • [2] Allu V(2021)Improved Bohr inequalities for certain class of harmonic univalent functions Complex Var. Ellipt. Equ. 47 103-1155
  • [3] Halder H(2022)The Bohr phenomenon for analytic functions on shifted disks Ann. Acad. Sci. Fenn. Math. 128 1147-78
  • [4] Ahamed MB(2000)Multidimensional analogues of Bohr’s theorem on power series Proc. Am. Math. Soc. 2 69-158
  • [5] Allu V(2012)Remarks on the Bohr and Rogosinski phenomenon for power series Anal. Math. Phys. 168 147-74
  • [6] Halder H(2005)On the Rogosinski radius for holomorphic mappings and some of its applications Stud. Math. 9 65-401
  • [7] Ahamed MB(2009)Bohr and Rogosinski abscissas for ordinary Dirichlet series Comput. Method Funct. Theory 82 385-5274
  • [8] Allu V(2001)A Bohr phenomenon for elliptic equations Proc. Lond. Math. Soc. 147 5263-746
  • [9] Halder H(2019)On the Bohr inequality with a fixed zero coefficient Proc. Am. Math. Soc. 493 726-19
  • [10] Aizenberg L(2021)Bohr radius for certain classes of starlike and convex univalent functions J. Math. Anal. Appl. 173 1-1098