This paper describes the module categories for a family of generic Hecke algebras, called Yokonuma-type Hecke algebras. Yokonuma-type Hecke algebras specialize both to the group algebras of the complex reflection groups G(r,1,n) and to the convolution algebras of (B′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\prime }$\end{document},B′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\prime }$\end{document})-double cosets in the group algebras of finite general linear groups, for certain subgroups B′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$^{\prime }$\end{document} consisting of upper triangular matrices. In particular, complete sets of inequivalent, irreducible modules for semisimple specializations of Yokonuma-type Hecke algebras are constructed.