Modules for Yokonuma-type Hecke Algebras

被引:0
作者
Ojas Davé
J. Matthew Douglass
机构
[1] Radford University,Department of Mathematics and Statistics
来源
Algebras and Representation Theory | 2017年 / 20卷
关键词
Representation theory; Hecke algebras; Finite general linear groups; Generic algebras; Primary 20C08;
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the module categories for a family of generic Hecke algebras, called Yokonuma-type Hecke algebras. Yokonuma-type Hecke algebras specialize both to the group algebras of the complex reflection groups G(r,1,n) and to the convolution algebras of (B′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document},B′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document})-double cosets in the group algebras of finite general linear groups, for certain subgroups B′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{\prime }$\end{document} consisting of upper triangular matrices. In particular, complete sets of inequivalent, irreducible modules for semisimple specializations of Yokonuma-type Hecke algebras are constructed.
引用
收藏
页码:355 / 377
页数:22
相关论文
共 12 条
  • [1] Alhaddad SI(2010)Generic Hecke algebras for monomial groups Represent. Theory 14 688-712
  • [2] Douglass JM(2014)Representation theory of the Yokonuma-Hecke algebra Adv. Math. 259 134-172
  • [3] Chlouveraki M(1996)Cellular algebras Invent. Math. 123 1-34
  • [4] Poulain d’Andecy L(2016)An isomorphism theorem for Yokonuma-Hecke algebras and applications to link invariants Math. Z. 283 301-338
  • [5] Graham JJ(1992)Représentation du groupe symétrique par des opérateurs de Fourier-Grassmann C. R. Acad. Sci. Paris Sér. I Math. 315 755-758
  • [6] Lehrer GI(1998)Sur les nouveaux générateurs de l’algèbre de Hecke $\mathcal {H}(G,U,\textbf {1})$ℋ(G,U,1) J. Algebra 204 49-68
  • [7] Jacon N(2005)Character sheaves on disconnected groups. VII Represent. Theory 9 209-266
  • [8] Poulain d’Andecy L(1967)Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini C. R. Acad. Sci. Paris Sér. A-B 264 A344-A347
  • [9] Juyumaya J(undefined)undefined undefined undefined undefined-undefined
  • [10] Juyumaya J(undefined)undefined undefined undefined undefined-undefined