A Penalization Approach for Tomographic Reconstruction of Binary Axially Symmetric Objects

被引:0
作者
R. Abraham
M. Bergounioux
E. Trélat
机构
[1] Université d’Orléans,UFR Sciences, Math., Labo. MAPMO, UMR 6628
来源
Applied Mathematics and Optimization | 2008年 / 58卷
关键词
Tomography; Optimization; Penalization;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a variational method for tomographic reconstruction of blurred and noised binary images based on a penalization process of a minimization problem settled in the space of bounded variation functions. We prove existence and/or uniqueness results and derive a penalized optimality system. Numerical simulations are provided to demonstrate the relevance of the approach.
引用
收藏
相关论文
共 20 条
  • [1] Acar R.(1994)Analysis of bounded variation penalty methods for ill-posed problems Inverse Probl. 10 1217-1229
  • [2] Vogel C.R.(1983)Overview of computerized tomography with emphasis on future developments Proc. IEEE 71 356-297
  • [3] Bates R.H.T.(2000)Control of Variational Inequalities and Lagrange Multipliers ESAIM, COCV 5 45-70
  • [4] Garden K.L.(1999)Regularization by functions of bounded variation and applications to image enhancement Appl. Math. Optim. 40 229-257
  • [5] Peters T.M.(2004)An algorithm for total variation minimization and applications J. Math. Imaging Vis. 20 89-97
  • [6] Bergounioux M.(2003)A curve evolution approach to object-based tomographic reconstruction IEEE Trans. Image Proccess. 12 44-57
  • [7] Mignot F.(2005)Reconstruction and visualization of planetary nebulae IEEE Trans. Vis. Comput. Graph. 11 485-496
  • [8] Casas E.(1989)Optimal approximations by piecewise smooth functions and associated variational problem Commun. Pure Appl. Math. 42 577-685
  • [9] Kunisch K.(undefined)undefined undefined undefined undefined-undefined
  • [10] Pola C.(undefined)undefined undefined undefined undefined-undefined