A Cameron-Storvick Theorem for Analytic Feynman Integrals on Product Abstract Wiener Space and Applications

被引:0
作者
Jae Gil Choi
Seung Jun Chang
机构
[1] Dankook University,Department of Mathematics
来源
Applied Mathematics & Optimization | 2013年 / 67卷
关键词
Cameron–Storvick theorem; Abstract Wiener space; Analytic Feynman integral; First variation; Generalized Fresnel class;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a Cameron-Storvick theorem for the analytic Feynman integral of functionals on product abstract Wiener space B2. We then apply our result to obtain an evaluation formula for the analytic Feynman integral of unbounded functionals on B2. We also present meaningful examples involving functionals which arise naturally in quantum mechanics.
引用
收藏
页码:243 / 260
页数:17
相关论文
共 13 条
[1]  
Cameron R.H.(1951)The first variation of an indefinite Wiener integral Proc. Am. Math. Soc. 2 914-924
[2]  
Chang K.S.(2000)Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space Rocky Mt. J. Math. 30 823-842
[3]  
Kim B.S.(2007)Evaluation formulas for conditional function space integrals I Stoch. Anal. Appl. 25 141-168
[4]  
Yoo I.(1987)Scale-invariant measurability in abstract Wiener spaces Pac. J. Math. 130 27-40
[5]  
Chang S.J.(1985)Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula Ann. Inst. Henri Poincaré 21 323-361
[6]  
Choi J.G.(1969)Abstract Wiener spaces and applications to analysis Pac. J. Math. 31 433-450
[7]  
Skoug D.(1994)Notes on a generalized Fresnel class Appl. Math. Optim. 30 225-233
[8]  
Chung D.M.(undefined)undefined undefined undefined undefined-undefined
[9]  
Kallianpur G.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kannan D.(undefined)undefined undefined undefined undefined-undefined