Blocking Sets of Certain Line Sets Related to a Conic

被引:0
作者
Angela Aguglia
Massimo Giulietti
机构
[1] Politecnico di Bari,Dipartimento di Matematica
[2] Università degli studi di Perugia,Dipartimento di Matematica
来源
Designs, Codes and Cryptography | 2006年 / 39卷
关键词
Conic; Blocking set; 1-factorization; Projectivity; 51E21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we classify point sets of minimum size of two types (1) point sets meeting all secants to an irreducible conic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} of the desarguesian projective plane PG(2,q), q odd; (2) point sets meeting all external lines and tangents to a given irreducible conic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} of the desarguesian projective plane PG(2,q), q even.
引用
收藏
页码:397 / 405
页数:8
相关论文
共 50 条
  • [31] Blocking Sets of Type (1, k) in a Finite Projective Plane
    Mauro Biliotti
    Eliana Francot
    Geometriae Dedicata, 2000, 79 : 121 - 141
  • [32] On minimum size blocking sets of the outer tangents to a hyperbolic quadric in PG(3, q)
    De Bruyn, Bart
    Sahoo, Binod Kumar
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 56 : 31 - 57
  • [33] Large blocking sets in PG(2, q2)
    Szonyi, Tamas
    Weiner, Zsuzsa
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 87
  • [34] Two Remarks on Blocking Sets and Nuclei in Planes of Prime Order
    Gács A.
    Sziklai P.
    Szonyi T.
    Designs, Codes and Cryptography, 1997, 10 (1) : 29 - 39
  • [35] Full Characterization of Minimal Linear Codes as Cutting Blocking Sets
    Tang, Chunming
    Qiu, Yan
    Liao, Qunying
    Zhou, Zhengchun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3690 - 3700
  • [36] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    G. Marino
    O. Polverino
    Designs, Codes and Cryptography, 2010, 56 : 115 - 130
  • [37] Blocking sets of type (1, k) in a finite projective plane
    Biliotti, M
    Francot, E
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 121 - 141
  • [38] Small Blocking Sets in PG(2, p3)
    Olga Polverino
    Designs, Codes and Cryptography, 2000, 20 : 319 - 324
  • [39] Classification of minimal blocking sets in PG(2,9)
    Botteldoorn, Arne
    Coolsaet, Kris
    Fack, Veerle
    JOURNAL OF GEOMETRY, 2024, 115 (01)
  • [40] Small proper double blocking sets in Galois planes of prime order
    Lisonek, Petr
    Wallis, Joanna
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4052 - 4056