Blocking Sets of Certain Line Sets Related to a Conic

被引:0
作者
Angela Aguglia
Massimo Giulietti
机构
[1] Politecnico di Bari,Dipartimento di Matematica
[2] Università degli studi di Perugia,Dipartimento di Matematica
来源
Designs, Codes and Cryptography | 2006年 / 39卷
关键词
Conic; Blocking set; 1-factorization; Projectivity; 51E21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we classify point sets of minimum size of two types (1) point sets meeting all secants to an irreducible conic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} of the desarguesian projective plane PG(2,q), q odd; (2) point sets meeting all external lines and tangents to a given irreducible conic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} of the desarguesian projective plane PG(2,q), q even.
引用
收藏
页码:397 / 405
页数:8
相关论文
共 50 条
  • [21] Candle in the Woods: Asymptotic Bounds on Minimum Blocking Sets
    Jovanovic, Natasa
    Korst, Jan
    Clout, Ramon
    Pronk, Verus
    Tolhuizen, Ludo
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 148 - 152
  • [22] Tight blocking sets in some maximum packings of λKn
    Chang, Yanxun
    Lo Faro, Giovanni
    Tripodi, Antoinette
    DISCRETE MATHEMATICS, 2008, 308 (2-3) : 427 - 438
  • [23] On MPS construction of blocking sets in projective spaces: A generalization
    Costa, Simone
    DISCRETE MATHEMATICS, 2016, 339 (02) : 946 - 956
  • [24] Blocking sets of Redei type in projective Hjelmslev planes
    Landjev, Ivan
    Boev, Stoyan
    DISCRETE MATHEMATICS, 2010, 310 (15-16) : 2061 - 2068
  • [25] Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [26] Blocking sets of tangent lines to a hyperbolic quadric in PG(3,3)
    De Bruyn, Bart
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    DISCRETE APPLIED MATHEMATICS, 2019, 266 : 121 - 129
  • [27] Classification of minimal blocking sets in PG(2,9)
    Arne Botteldoorn
    Kris Coolsaet
    Veerle Fack
    Journal of Geometry, 2024, 115
  • [28] Lower bounds for the cardinality of minimal blocking sets in projective spaces
    Bokler, M
    DISCRETE MATHEMATICS, 2003, 270 (1-3) : 13 - 31
  • [29] Small blocking sets in PG(2, p3)
    Polverino, O
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 20 (03) : 319 - 324
  • [30] Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties
    Marino, G.
    Polverino, O.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 115 - 130