Blocking Sets of Certain Line Sets Related to a Conic

被引:0
作者
Angela Aguglia
Massimo Giulietti
机构
[1] Politecnico di Bari,Dipartimento di Matematica
[2] Università degli studi di Perugia,Dipartimento di Matematica
来源
Designs, Codes and Cryptography | 2006年 / 39卷
关键词
Conic; Blocking set; 1-factorization; Projectivity; 51E21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we classify point sets of minimum size of two types (1) point sets meeting all secants to an irreducible conic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} of the desarguesian projective plane PG(2,q), q odd; (2) point sets meeting all external lines and tangents to a given irreducible conic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C}$$\end{document} of the desarguesian projective plane PG(2,q), q even.
引用
收藏
页码:397 / 405
页数:8
相关论文
共 50 条
  • [1] Blocking sets of certain line sets related to a conic
    Aguglia, A
    Giulietti, M
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (03) : 397 - 405
  • [2] Minimum size blocking sets of certain line sets related to a conic in PG(2, q)
    Patra, Kamal L.
    Sahoo, Binod K.
    Sahu, Bikramaditya
    DISCRETE MATHEMATICS, 2016, 339 (06) : 1716 - 1721
  • [3] Blocking sets of certain line sets related to a hyperbolic quadric in PG(3, q)
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    ADVANCES IN GEOMETRY, 2019, 19 (04) : 477 - 486
  • [4] MINIMUM SIZE BLOCKING SETS OF CERTAIN LINE SETS WITH RESPECT TO AN ELLIPTIC QUADRIC IN PG(3, q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (02) : 132 - 147
  • [5] Blocking sets in line Grassmannians
    Zanella, Corrado
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1805 - 1811
  • [6] Blocking sets of nonsecant lines to a conic in PG(2,q), q odd
    Aguglia, A
    Korchmáros, G
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (04) : 292 - 301
  • [7] On small blocking sets and their linearity
    Sziklai, Peter
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) : 1167 - 1182
  • [8] Blocking sets in PG(r, qn)
    Mazzocca, F.
    Polverino, O.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 44 (1-3) : 97 - 113
  • [9] Blocking sets of Hermitian generalized quadrangles
    Cossidente, Antonio
    Pavese, Francesco
    DISCRETE MATHEMATICS, 2015, 338 (01) : 43 - 46
  • [10] Blocking Sets in PG(r, qn)
    F. Mazzocca
    O. Polverino
    L. Storme
    Designs, Codes and Cryptography, 2007, 44 : 97 - 113