Some Curvature Properties of Generalized Sasakian-Space-Forms

被引:0
作者
A. A. Hosseinzadeh
机构
[1] University of Zabol,Department of Mathematics, Faculty of Basic Sciences
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2019年 / 89卷
关键词
Generalized Sasakian-space-form; -Bochner curvature tensor; Einstein manifold; Pseudo projective curvature tensor; Projective curvature tensor; Pseudo projective ; -recurrent; 53C25; 53D15;
D O I
暂无
中图分类号
学科分类号
摘要
The object of this paper is to study of pseudo projective curvature tensor and C-Bochner curvature tensor on generalized Sasakian-space-forms. We show that pseudo projective generalized Sasakian-space-forms are Einstein manifolds. Additionally, generalized Sasakian-space-forms under some conditions related to pseudo projective curvature tensor are studied. In next, we consider the conditions B(X,Y)Z=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(X,Y)Z=0$$\end{document} and R.B=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R.B=0$$\end{document} on a generalized Sasakian-space-form, where B is the C-Bochner curvature tensor.
引用
收藏
页码:721 / 727
页数:6
相关论文
共 26 条
[1]  
Alegre P(2004)Generalized Sasakian-space-forms Israel J Math 141 157-183
[2]  
Blair D(2010)On the projective curvature tensor of generalized Sasakian-space-forms Quest Math 33 245-252
[3]  
Carriazo A(2012)Some curvature properties of generalized Sasakian-space-forms Lobachevskii J Math 33 22-27
[4]  
De UC(2012)On Lobachevskii J Math 33 244-248
[5]  
Sarkar A(2008)-recurrent generalized Sasakian-space-forms Differ Geometry Its Appl 26 656-666
[6]  
Sarkar A(2011)Structure on generalized Sasakian-space-forms Results Math 59 485-493
[7]  
De UC(2012)Generalized Sasakian-space-forms and conformal changes of the metric Bull Malay Math Sci Soc 35 263-275
[8]  
Sarkar A(2015)Cohomology and stability of generalized Sasakian-space-forms Arab J Math Sci 21 170-178
[9]  
Sen M(2010)-semisymmetric generalized Sasakian space-forms Mediterr J Math 7 19-36
[10]  
Alegre P(2013)Locally conformal Mediterr J Math 10 1051-1065