Ohlin’s lemma and some inequalities of the Hermite–Hadamard type

被引:0
作者
Tomasz Szostok
机构
[1] University of Silesia,Institute of Mathematics
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
Primary 26A51; Secondary 26D10; 39B62; Convex functions; Hermite–Hadamard inequalities;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Ohlin lemma on convex stochastic ordering we prove inequalities of the Hermite–Hadamard type. Namely, we determine all numbers a,α,β∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,\alpha,\beta\in[0,1]}$$\end{document} such that for all convex functions f the inequality af(αx+(1-α)y)+(1-a)f(βx+(1-β)y)≤1y-x∫xyf(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$af(\alpha x+(1-\alpha )y)+(1-a)f(\beta x+(1-\beta) y)\leq \frac{1}{y-x} \int\limits_{x}^yf(t)dt$$\end{document}is satisfied and all a,b,c,α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,b,c,\alpha\in(0,1)}$$\end{document} with a + b + c = 1 for which we have af(x)+bf(αx+(1-α)y)+cf(y)≥1y-x∫xyf(t)dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$af(x)+bf(\alpha x+(1-\alpha)y)+cf(y)\geq\frac{1}{y-x} \int\limits_{x}^yf(t)dt$$\end{document}.
引用
收藏
页码:915 / 926
页数:11
相关论文
共 7 条
  • [1] Bessenyei M.(2010)Characterization of higher order monotonicity via integral inequalities Proc. Roy. Soc. Edinb. Sect. A 140 723-736
  • [2] Páles Zs.(2010)Simple proof and refinement of Hermite–Hadamard inequality J. Math. Inequal. 4 365-369
  • [3] El Farissi A.(2007)Generalized Hadamard’s inequalities based on general Euler 4-point formulae ANZIAM J. 48 387-404
  • [4] Klaričić Bakula M.(1969)On a class of measures of dispersion with application to optimal reinsurance ASTIN Bull. 5 249-266
  • [5] Pečarić J.(2014)On The Ohlin lemma for Hermite–Hadamard–Fejer type inequalities Math. Ineq. Appl. 17 557-571
  • [6] Ohlin J.(undefined)undefined undefined undefined undefined-undefined
  • [7] Rajba T.(undefined)undefined undefined undefined undefined-undefined