Discretizing dynamical systems with generalized Hopf bifurcations

被引:0
作者
Joseph Páez Chávez
机构
[1] Instituto de Ciencias Matemáticas,
[2] Escuela Superior Politécnica del Litoral,undefined
来源
Numerische Mathematik | 2011年 / 118卷
关键词
65P30; 65L99; 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the discretizations of parameter-dependent, continuous-time dynamical systems. We show that the general one-step methods shift a generalized Hopf bifurcation and turn it into a generalized Neimark–Sacker point. We analyze the effect of discretization methods on the emanating Hopf curve. In particular, we obtain estimates for the eigenvalues of the discretized system along this curve. A detailed analysis of the discretized first Lyapunov coefficient is also given. The results are illustrated by a numerical example. Dynamical consequences are discussed.
引用
收藏
页码:229 / 246
页数:17
相关论文
共 43 条
  • [1] Alexander M.(2006)Neimark-Sacker bifurcations in a non-standard numerical scheme for a class of positivity-preserving ODEs Proc. R. Soc. A 462 3167-3184
  • [2] Summers A.(1998)Analysis of Hopf and Takens-Bogdanov bifurcations in a modified Van der Pol-Duffing oscillator Nonlinear Dyn. 16 369-404
  • [3] Moghadas S.(2003)On manifolds of connecting orbits in discretizations of dynamical systems Nonlinear Anal. 52 1499-1520
  • [4] Algaba A.(1989)Two concepts for numerical periodic solutions of ODEs Appl. Math. Comput. 31 121-131
  • [5] Freire E.(1993)A case study for homoclinic chaos in an autonomous electronic circuit. A trip from Takens-Bogdanov to Hopf-Shil’nikov Physica D 62 230-253
  • [6] Rodriguez-Luis A.J.(1996)On J. Differ. Equ. Appl. 2 67-86
  • [7] Gamero E.(2000)-closeness between the solution flow and its numerical approximation SIAM J. Numer. Anal. 38 329-346
  • [8] Beyn W.-J.(1983)Numerical methods for the generalized Hopf bifurcation IMA J. Numer. Anal. 3 295-303
  • [9] Zou J.-K.(1997)The calculation of Hopf points by a direct method SIAM J. Numer. Anal. 34 1-21
  • [10] Eirola T.(1984)Computing Hopf bifurcations I Monatsh. Math. 98 99-113