L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}$$\end{document}-invariant and radial singular integral operators on the Fock space

被引:0
作者
Shubham R. Bais
D. Venku Naidu
机构
[1] Indian Institute of Technology Hyderabad,Department of Mathematics
关键词
Fock space; Fourier transform; Bargmann transform; -invariant operator; Radial operator; Singular integral operator; Multiplication operator; Reducing subspace; 42B15; 42B20; 30H20; 47G10; 47A15;
D O I
10.1007/s11868-023-00506-w
中图分类号
学科分类号
摘要
For a unitary matrix X of order n over the field of complex numbers and an entire function φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} belonging to the Fock space F2:=F2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}^2:=\mathfrak {F}^2(\mathbb {C}^n)$$\end{document}, we define an integral operator on F2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}^2(\mathbb {C}^n)$$\end{document} of the form (HφXf)(z)=∫Cnf(w)φ(z+X∗Xw¯)ezw¯dλ(w).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (H_\varphi ^X f)(z) = \int _{\mathbb {C}^{n}} f(w)\varphi (z+X^*\overline{Xw})e^{z\overline{w}} d\lambda (w). \end{aligned}$$\end{document}Here dλ(z)=π-ne-|z|2dz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\lambda (z) = \pi ^{-n} e^{-\vert z\vert ^2}dz$$\end{document} is a Gaussian measure on Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}. We characterize all the symbols φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} for which the operator HφX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\varphi ^X$$\end{document} is bounded. Next, we consider integral operator on F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}^2$$\end{document} defined by (Rφf)(z)=∫Cnf(w)φ(z⋆w¯)dλ(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (R_\varphi f)(z) = \int _{{\mathbb C^n}} f(w) \varphi (z\star \bar{w})d\lambda (w) \end{aligned}$$\end{document}for φ∈F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in \mathfrak {F}^2$$\end{document}, where ⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document} is a coordinatewise multiplication. We give a complete characterization for the symbols φ∈F2(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in \mathfrak {F}^2(\mathbb {C}^n)$$\end{document} so that the operator Rφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\varphi $$\end{document} is bounded on F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}^2$$\end{document}. In addition to boundedness, we also obtain some fundamental results for the operators HφX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\varphi ^X$$\end{document} and Rφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\varphi $$\end{document} such as normality, the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra properties, the spectrum and the compactness. Moreover, we characterize the common reducing subspaces for each of the collections BX={HφX∈B(F2):φ∈F2},R={Rφ∈B(F2):φ∈F2},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathfrak {B}^X&= \Big \{H_\varphi ^X \in \mathcal {B}(\mathfrak {F}^2) : \varphi \in \mathfrak {F}^2 \Big \} ,~~ \mathfrak {R} = \Big \{R_\varphi \in \mathcal {B}(\mathfrak {F}^2) : \varphi \in \mathfrak {F}^2\Big \}, \end{aligned}$$\end{document}respectively.
引用
收藏
相关论文
共 21 条
[1]  
Bais SR(2021)Study of twisted Bargmann transform via Bargmann transform Forum Math. 33 1659-1670
[2]  
Naidu DV(1961)On a Hilbert space of analytic functions and an associated integral transform Commun. Pure Appl. Math. 14 187-214
[3]  
Bargmann V(1994)Heat flow and Berezin–Toeplitz estimates Am. J. Math. 116 563-590
[4]  
Berger CA(2020)A boundedness criterion for singular integral operators of convolution type on the Fock space Adv. Math. 363 107001-582
[5]  
Coburn LA(2016)C*-algebra generated by horizontal Toeplitz operators on the Fock space Bol. Soc. Mat. Mex. (3) 22 567-37
[6]  
Cao G(2002)Toeplitz operators on the Fock space: radial component effects Integr. Equ. Oper. Theory 44 10-166
[7]  
Li J(2013)Vertical Toeplitz operators on the upper half-plane and very slowly oscillating functions Integr. Equ. Oper. Theory 77 149-30
[8]  
Shen M(2012)Mapping properties for the Bargmann transform on modulation spaces J. Pseudo-Differ. Oper. Appl. 3 1-227
[9]  
Wick BD(2012)The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators J. Pseudo-Differ. Oper. Appl. 3 145-454
[10]  
Yan L(2015)Singular integral operators on the Fock space Integr. Equ. Oper. Theory 81 451-undefined