Time-fractional diffusion equation in the fractional Sobolev spaces

被引:0
|
作者
Rudolf Gorenflo
Yuri Luchko
Masahiro Yamamoto
机构
[1] Free University of Berlin,Department of Mathematics and Informatics
[2] Beuth Technical University of Applied Sciences,Department of Mathematics, Physics, and Chemistry
[3] The University of Tokyo Komaba,Department of Mathematical Sciences
[4] Meguro,undefined
来源
Fractional Calculus and Applied Analysis | 2015年 / 18卷
关键词
Primary 26A33; Secondary 35C05, 35E05, 35L05, 45K05, 60E99; Riemann-Liouville integral; Caputo fractional derivative; fractional Sobolev spaces; norm equivalences; fractional diffusion equation in Sobolev spaces; norm estimates of the solutions; initialboundary- value problems; weak solution; existence and uniqueness results;
D O I
暂无
中图分类号
学科分类号
摘要
The Caputo time-derivative is usually defined pointwise for well-behaved functions, say, for the continuously differentiable functions. Accordingly, in the publications devoted to the theory of the partial fractional differential equations with the Caputo derivatives, the functional spaces where the solutions are looked for are often the spaces of smooth functions that appear to be too narrow for several important applications. In this paper, we propose a definition of the Caputo derivative on a finite interval in the fractional Sobolev spaces and investigate it from the operator theoretic viewpoint. In particular, some important equivalences of the norms related to the fractional integration and differentiation operators in the fractional Sobolev spaces are given. These results are then applied for proving the maximal regularity of the solutions to some initial-boundary-value problems for the time-fractional diffusion equation with the Caputo derivative in the fractional Sobolev spaces.
引用
收藏
页码:799 / 820
页数:21
相关论文
共 50 条
  • [41] Sobolev type equations of time-fractional order with periodical boundary conditions
    Plekhanova, Marina
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [42] An efficient difference scheme for time-fractional KdV equation
    Xing, Zhiyong
    Wen, Liping
    Wang, Wansheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08)
  • [43] Radial extensions in fractional Sobolev spaces
    H. Brezis
    P. Mironescu
    I. Shafrir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 707 - 714
  • [44] Radial extensions in fractional Sobolev spaces
    Brezis, H.
    Mironescu, P.
    Shafrir, I.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 707 - 714
  • [45] A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation
    Wang, Kangle
    Liu, Sanyang
    SPRINGERPLUS, 2016, 5
  • [46] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES
    Fiscella, Alessio
    Servadei, Raffaella
    Valdinoci, Enrico
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 235 - 253
  • [47] Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation
    Liu, Li-Bin
    Xu, Lei
    Zhang, Yong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 209 : 87 - 101
  • [48] DOUBLE EXPONENTIAL EULER SINC COLLOCATION METHOD FOR A TIME-FRACTIONAL CONVECTION-DIFFUSION EQUATION
    Eftekhari, Ali
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (04): : 745 - 753
  • [49] A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES
    Carbotti, Alessandro
    Comi, Giovanni E.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 17 - 54
  • [50] A Nonlinear Fractional Problem with a Second Kind Integral Condition for Time-Fractional Partial Differential Equation
    Abdelouahab, Benbrahim
    Oussaeif, Taki-Eddine
    Ouannas, Adel
    Saad, Khaled M.
    Jahanshahi, Hadi
    Diar, Ahmed
    Aljuaid, Awad M.
    Aly, Ayman A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022