Modified equivalent circuits for CuGaSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CuGaSe}_{2}$$\end{document} thin films including space charge limited current

被引:0
作者
Nima E. Gorji
机构
[1] University of Tabriz,Department of New Technologies
关键词
Thin films; Elements; Optical properties; Semi-conductivity; Electrical properties;
D O I
10.1007/s11082-014-0072-3
中图分类号
学科分类号
摘要
Current separation method has been used to identify the contribution of diode elements in the equivalent circuits of the thin film solar cells. This method is applied to analyse the current–voltage characteristics of the CuGaSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}/CdS thin film solar cells measured under two different temperatures and several low illumination levels. The results reveal that the conventional double or single diode models are not well fitted to the experimental data under low illumination levels. However, the introduction of the space charge limited current element into the conventional equivalent circuits improves the fitness of the diode theory and experimental data. The voltage dependency of the space charge limited current is different under each operation condition. However, this voltage-dependency is not linear as was also reported in different literatures. For each single and double diode models, and for each illumination and operation temperature, the voltage dependency (Vm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {V}^{\mathrm{m}})$$\end{document} varies as m=0.5,1,1.5,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {m}}=0.5, 1, 1.5, 2$$\end{document}.
引用
收藏
页码:1999 / 2008
页数:9
相关论文
共 37 条
  • [11] Djebbour D(2009) thin-film solar cells with ALDZnO buffer layers Renew. Energy 34 965969-965974
  • [12] Darga A(2003)Current transport in copper indium gallium diselenide solar cells comparing mesa diodes to the full cell Sol. Energy Mat. Sol. Cells. 77 415422-415428
  • [13] Malm U(2011)Current-voltage analysis of the record-efficiency Sol. Energy 85 769775-769778
  • [14] Platzer-Bjorkman J(2005) solar cell: application of the current separation method and the interface recombination model Sol. Energy Mat. Sol. Cells. 85 391396-3913402
  • [15] Stolt C(2006)Separation of solar cell current into its constituent parallel currents under illumination J. Appl. Phys. 100 0845131-0845135
  • [16] Tan J(1996)Analysis of illumination-intensity-dependent IV characteristics of ZnO/CdS/CuGaSe J. Appl. Phys. 79 8493-8497
  • [17] Anderson W(1996) single crystal solar cells Semi. Sci. Tech. 11 12091213-12091219
  • [18] Saad M(2001)A simple approach to determine the solar cell diode ideality factor under illumination Mat. Sci. Eng. B. 79 146-153
  • [19] Kassis A(2014)A new method to determine the diode ideality factor of real solar cell using Lambert W-function Appl. Phys. A. 116 1347-1352
  • [20] Kassis A(2013)A compact equivalent circuit for the dark current–voltage characteristics of nonideal solar cells Phys. B. 431 44-48