Modified equivalent circuits for CuGaSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CuGaSe}_{2}$$\end{document} thin films including space charge limited current

被引:0
作者
Nima E. Gorji
机构
[1] University of Tabriz,Department of New Technologies
关键词
Thin films; Elements; Optical properties; Semi-conductivity; Electrical properties;
D O I
10.1007/s11082-014-0072-3
中图分类号
学科分类号
摘要
Current separation method has been used to identify the contribution of diode elements in the equivalent circuits of the thin film solar cells. This method is applied to analyse the current–voltage characteristics of the CuGaSe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}/CdS thin film solar cells measured under two different temperatures and several low illumination levels. The results reveal that the conventional double or single diode models are not well fitted to the experimental data under low illumination levels. However, the introduction of the space charge limited current element into the conventional equivalent circuits improves the fitness of the diode theory and experimental data. The voltage dependency of the space charge limited current is different under each operation condition. However, this voltage-dependency is not linear as was also reported in different literatures. For each single and double diode models, and for each illumination and operation temperature, the voltage dependency (Vm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hbox {V}^{\mathrm{m}})$$\end{document} varies as m=0.5,1,1.5,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {m}}=0.5, 1, 1.5, 2$$\end{document}.
引用
收藏
页码:1999 / 2008
页数:9
相关论文
共 37 条
  • [1] Gorji NE(2013)Carbon nanotubes application as buffer layer in Cu(In, Ga) Phys. E 50 122-125
  • [2] Houshmand M(2013) based thin film solar cells Phys. B 431 44-48
  • [3] Gorji NE(2011)Modelling the impedance of thin film PV in SCLC dominant region Sol. Energy 85 769-775
  • [4] Bayhan H(1998)A simple approach to determine the solar cell diode ideality factor under illumination Cryst. Res. Tech. 33 285-289
  • [5] Bayhan M(2013)Space-charge-limited current effects in p-type CuInGaSe/In Schottky diodes Sol. Energy 87 168175-168179
  • [6] Hernandez E(2011)An analysis of the effect of illumination to the reverse and forward bias current transport mechanisms in an efficient n-ZnO/n-CdS/p-Cu(In, Ga) Energy Conv. Manag. 52 2153-2156
  • [7] Bayhan H(2007) solar cell Thin Solid Films. 515 6233-6237
  • [8] Bayhan M(2005)Pre-estimation and evaluation of parameters from JV curves of CI(G)S devices Thin Solid Films. 480–481 208-212
  • [9] Zhou Z(2003)Comparing the optical and electrical gap of electrodeposited CuIn(S, Se) and IVT measurements Thin Solid Films 77 283-292
  • [10] Zhao K(2011)Determination of dominant recombination paths in Cu(In, Ga) Sol. Energy Mat. Sol. Cells 95 1927-1931