The Undecidability of Propositional Adaptive Logic

被引:0
作者
Leon Horsten
Philip Welch
机构
[1] University of Leuven,
[2] Bristol University,undefined
来源
Synthese | 2007年 / 158卷
关键词
Adaptive logic; Paraconsistent logic; Dynamic logic; Undecidability;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate and classify the notion of final derivability of two basic inconsistency-adaptive logics. Specifically, the maximal complexity of the set of final consequences of decidable sets of premises formulated in the language of propositional logic is described. Our results show that taking the consequences of a decidable propositional theory is a complicated operation. The set of final consequences according to either the Reliability Calculus or the Minimal Abnormality Calculus of a decidable propositional premise set is in general undecidable, and can be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma^0_3$$\end{document}-complete. These classifications are exact. For first order theories even finite sets of premises can generate such consequence sets in either calculus.
引用
收藏
页码:41 / 60
页数:19
相关论文
共 5 条
  • [1] Batens D.(2005)The theory of explanation generalized to include the inconsistent case Synthese 143 63-88
  • [2] Batens D.(2005)A procedural criterion for final derivability in inconsistency-adaptive logics Journal of Applied Logic 3 221-250
  • [3] Burgess J.(1986)The truth is never simple Journal of Symbolic Logic 51 663-681
  • [4] Putnam H.(1965)Trial and error predicates and the solution to a problem of Mostowski Journal of Symbolic logic 30 49-57
  • [5] Urquhart A.(1984)The undecidability of entailment and relevant implication Journal of Symbolic Logic 49 1059-1073