Non-uniqueness of Leray Solutions to the Hypodissipative Navier–Stokes Equations in Two Dimensions

被引:0
|
作者
Dallas Albritton
Maria Colombo
机构
[1] Princeton University,Department of Mathematics
[2] EPFL SB,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We exhibit non-unique Leray solutions of the forced Navier–Stokes equations with hypodissipation in two dimensions. Unlike the solutions constructed in Albritton et al. (Ann Math 196(1):415–455, 2022), the solutions we construct live at a supercritical scaling, in which the hypodissipation formally becomes negligible as t→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow 0^+$$\end{document}. In this scaling, it is possible to perturb the Euler non-uniqueness scenario of Vishik (Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I, 2018; Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II, 2018) to the hypodissipative setting at the nonlinear level. Our perturbation argument is quasilinear in spirit and circumvents the spectral theoretic approach to incorporating the dissipation in Albritton et al. (2022).
引用
收藏
页码:429 / 446
页数:17
相关论文
共 50 条
  • [1] Non-uniqueness of Leray Solutions to the Hypodissipative Navier-Stokes Equations in Two Dimensions
    Albritton, Dallas
    Colombo, Maria
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 429 - 446
  • [2] Non-uniqueness of Leray solutions of the forced Navier-Stokes equations
    Albritton, Dallas
    Brue, Elia
    Colombo, Maria
    ANNALS OF MATHEMATICS, 2022, 196 (01) : 415 - 455
  • [3] Ill-Posedness of Leray Solutions for the Hypodissipative Navier–Stokes Equations
    Maria Colombo
    Camillo De Lellis
    Luigi De Rosa
    Communications in Mathematical Physics, 2018, 362 : 659 - 688
  • [4] Ill-Posedness of Leray Solutions for the Hypodissipative Navier-Stokes Equations
    Colombo, Maria
    De Lellis, Camillo
    De Rosa, Luigi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 362 (02) : 659 - 688
  • [5] Non-uniqueness of Leray-Hopf solutions to the forced fractional Navier-Stokes equations in three dimensions, up to the J. L. Lions exponent
    Khor, Calvin
    Miao, Changxing
    Su, Xiaoyan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (06) : 2705 - 2717
  • [6] Uniqueness for some Leray-Hopf solutions to the Navier-Stokes equations
    Dubois, S
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) : 99 - 147
  • [7] Non-uniqueness of weak solutions to 2D hypoviscous Navier-Stokes equations
    Luo, Tianwen
    Qu, Peng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 2896 - 2919
  • [8] NON-UNIQUENESS OF WEAK SOLUTIONS TO 2D GENERALIZED NAVIER-STOKES EQUATIONS
    Li, Xinliang
    Tan, Zhong
    arXiv,
  • [9] On the uniqueness and non-uniqueness of the steady planar Navier-Stokes equations in an exterior domain
    Guo, Zhengguang
    Wang, Wendong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 : 483 - 510
  • [10] NON-UNIQUENESS FOR THE HYPO-VISCOUS COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Li, Yachun
    Qu, Peng
    Zeng, Zirong
    Zhang, Deng
    arXiv, 2022,