A unified approach to the large deviations for small perturbations of random evolution equations

被引:0
作者
Yijun Hu
机构
[1] Wuhan University,Department of Mathematics
来源
Science in China Series A: Mathematics | 1997年 / 40卷
关键词
large deviations; random evolution equations; small perturbations;
D O I
暂无
中图分类号
学科分类号
摘要
LetXɛ = {Xɛ (t ; 0 ⩽t ⩽ 1 } (ɛ > 0) be the processes governed by the following stochastic differential equations:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$dX^\varepsilon (t) = \sqrt \varepsilon \sigma (X^\varepsilon (t))dB(t) + b(X^\varepsilon (t),\nu (t))dt,$$ \end{document} wherev(t) is a random process independent of the Brownian motionB(·). Some large deviation (LD) properties of { (Xɛ, ν(.)); ɛ > 0} are proved. For a particular case, an explicit representation of the rate function is also given, which solves a problem posed by Eizenberg and Freidlin. In the meantime, an abstract LD theorem is obtained.
引用
收藏
页码:697 / 706
页数:9
相关论文
共 50 条
[41]   Large deviations for random power moment problem [J].
Gamboa, F ;
Lozada-Chang, LV .
ANNALS OF PROBABILITY, 2004, 32 (3B) :2819-2837
[42]   LARGE DEVIATIONS IN RANDOMLY COLOURED RANDOM GRAPHS [J].
Biggins, J. D. ;
Penman, D. B. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 :290-301
[43]   LARGE DEVIATIONS FOR RANDOM UPPER SEMICONTINUOUS FUNCTIONS [J].
Ogura, Yukio ;
Setokuchi, Takayoshi .
TOHOKU MATHEMATICAL JOURNAL, 2009, 61 (02) :213-223
[44]   Large deviations of products of random topical operators [J].
Toomey, F .
ANNALS OF APPLIED PROBABILITY, 2002, 12 (01) :317-333
[45]   General theorems on large deviations for random vectors [J].
Rimantas Rudzkis ;
Aleksej Bakshaev .
Lithuanian Mathematical Journal, 2017, 57 :367-390
[46]   Large Deviations for Continuous Time Random Walks [J].
Wang, Wanli ;
Barkai, Eli ;
Burov, Stanislav .
ENTROPY, 2020, 22 (06) :1-22
[47]   Large deviations in expanding random dynamical systems [J].
Bogenschütz, T ;
Doebler, A .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (04) :805-812
[48]   General theorems on large deviations for random vectors [J].
Rudzkis, Rimantas ;
Bakshaev, Aleksej .
LITHUANIAN MATHEMATICAL JOURNAL, 2017, 57 (03) :367-390
[49]   Large deviations for random matricial moment problems [J].
Gamboa, Fabrice ;
Nagel, Jan ;
Rouault, Alain ;
Wagener, Jens .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 106 :17-35
[50]   Large deviations for stochastic nonlinear beam equations [J].
Zhang, Tusheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 248 (01) :175-201