Existence and Liouville theorems for V -harmonic maps from complete manifolds

被引:0
作者
Qun Chen
Jürgen Jost
Hongbing Qiu
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Max Planck Institute for Mathematics in the Sciences,Department of Mathematics
[3] Leipzig University,undefined
来源
Annals of Global Analysis and Geometry | 2012年 / 42卷
关键词
-Harmonic map; Noncompact manifold; Existence; Liouville theorem; -Laplacian comparison theorem; 58E20; 53C27;
D O I
暂无
中图分类号
学科分类号
摘要
We establish existence and uniqueness theorems for V-harmonic maps from complete noncompact manifolds. This class of maps includes Hermitian harmonic maps, Weyl harmonic maps, affine harmonic maps, and Finsler harmonic maps from a Finsler manifold into a Riemannian manifold. We also obtain a Liouville type theorem for V-harmonic maps. In addition, we prove a V-Laplacian comparison theorem under the Bakry-Emery Ricci condition.
引用
收藏
页码:565 / 584
页数:19
相关论文
共 44 条
  • [1] Centore P.(2000)Finsler Laplacians and minimal-energy maps Internat. J. Math. 11 1-13
  • [2] Choi H.(1982)On the Liouville theorem for harmonic maps Proc. Amer. Math. Soc. 85 91-94
  • [3] Colding T.H.(2012)II: Generic mean curvature flow I: generic singularities Ann. Math. 175 755-833
  • [4] Minicozzi W.P.(1991)Harmonic maps of complete noncompact Riemannian manifolds Internat. J. Math. 2 617-633
  • [5] Ding W.Y.(2010)Hermitian harmonic maps from complete manifolds into convex balls Nonlinear Anal. 72 3457-3462
  • [6] Wang Y.D.(2005)On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds Math. Z. 249 297-327
  • [7] Dong T.(2008)Harmonic maps from complex Finsler manifolds Pacific J. Math. 236 341-356
  • [8] Grunau H.-C.(1979)Uniqueness and stability of harmonic maps and their Jacobi fields Manuscripta Math. 28 269-291
  • [9] Kühnel M.(2009)Affine harmonic maps Analysis (Munich) 29 185-197
  • [10] Han J.W.(1993)A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorem in Hermitian geometry Acta Math. 170 221-254