Complete q th moment convergence for arrays of random variables

被引:0
作者
Soo Hak Sung
机构
[1] Pai Chai University,Department of Applied Mathematics
来源
Journal of Inequalities and Applications | / 2013卷
关键词
complete convergence; complete moment convergence; -convergence; dependent random variables;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xni,1≤i≤n,n≥1} be an array of random variables with EXni=0 and E|Xni|q<∞ for some q≥1. For any sequences {an,n≥1} and {bn,n≥1} of positive real numbers, sets of sufficient conditions are given for complete q th moment convergence of the form ∑n=1∞bnan−qE(max1≤k≤n|∑i=1kXni|−ϵan)+q<∞, ∀ϵ>0, where x+=max{x,0}. From these results, we can easily obtain some known results on complete q th moment convergence.
引用
收藏
相关论文
共 26 条
[11]  
Chen PY(2006)-mixing assumption J. Iran. Stat. Soc 5 69-75
[12]  
Wang DC(1976)Limiting behavior for arrays of rowwise Z. Wahrscheinlichkeitstheor. Verw. Geb 35 299-314
[13]  
Zhou XC(1988)-mixing random variables Acta Math. Sin. Chin. Ser 31 736-747
[14]  
Lin JG(1995)A comparison theorem on moment inequalities between negatively associated and independent random variables Ann. Probab 23 948-965
[15]  
Wu Y(2003)Rosenthal’s type inequalities for negatively orthant dependent random variables J. Theor. Probab 16 101-115
[16]  
Wang C(undefined)Moment inequalities and the strong laws of large numbers undefined undefined undefined-undefined
[17]  
Volodin A(undefined)A moment inequality and its applications undefined undefined undefined-undefined
[18]  
Shao QM(undefined)Maximal inequalities for partial sums of undefined undefined undefined-undefined
[19]  
Asadian N(undefined)-mixing sequences undefined undefined undefined-undefined
[20]  
Fakoor V(undefined)Maximal inequalities and an invariance principle for a class of weakly dependent random variables undefined undefined undefined-undefined