Complete q th moment convergence for arrays of random variables

被引:0
作者
Soo Hak Sung
机构
[1] Pai Chai University,Department of Applied Mathematics
来源
Journal of Inequalities and Applications | / 2013卷
关键词
complete convergence; complete moment convergence; -convergence; dependent random variables;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xni,1≤i≤n,n≥1} be an array of random variables with EXni=0 and E|Xni|q<∞ for some q≥1. For any sequences {an,n≥1} and {bn,n≥1} of positive real numbers, sets of sufficient conditions are given for complete q th moment convergence of the form ∑n=1∞bnan−qE(max1≤k≤n|∑i=1kXni|−ϵan)+q<∞, ∀ϵ>0, where x+=max{x,0}. From these results, we can easily obtain some known results on complete q th moment convergence.
引用
收藏
相关论文
共 26 条
  • [1] Hsu PL(1947)Complete convergence and the law of large numbers Proc. Natl. Acad. Sci. USA 33 25-31
  • [2] Robbins H(1949)On a theorem of Hsu and Robbins Ann. Math. Stat 20 286-291
  • [3] Erdös P(1965)Convergence rates in the law of large numbers Trans. Am. Math. Soc 120 108-123
  • [4] Baum LE(1988)On the rate of moment convergence of sample sums and extremes Bull. Inst. Math. Acad. Sin 16 177-201
  • [5] Katz M(2005)Refinement of convergence rates for tail probabilities J. Theor. Probab 18 933-947
  • [6] Chow YS(2008)Convergence rates for probabilities of moderate deviations for moving average processes Acta Math. Sin 24 611-622
  • [7] Li D(2010)Complete moment convergence for sequences of identically distributed Acta Math. Sin 26 679-690
  • [8] Spătaru A(2011)-mixing random variables J. Math. Res. Expo 31 687-697
  • [9] Chen PY(2012)Complete Lith. Math. J 52 214-221
  • [10] Wang DC(2000)-moment convergence of moving average processes under J. Theor. Probab 13 343-356