Heat Capacities of LiCu2O2 and CuO in the Temperature Range 323-773 K and Cu2O in the Temperature Range 973-1273 K

被引:0
作者
Maren Lepple
Damian M. Cupid
Peter Franke
Hans J. Seifert
机构
[1] Karlsruhe Institute of Technology,Institute for Applied Materials – Applied Materials Physics
来源
Journal of Phase Equilibria and Diffusion | 2014年 / 35卷
关键词
CALPHAD; conversion electrodes; copper oxides; differential scanning calorimetry (DSC); heat capacity; LiCu; O; lithium ion battery;
D O I
暂无
中图分类号
学科分类号
摘要
The Li-Cu-O system is a promising materials system for the development of new anode materials for lithium ion batteries based on copper oxides. The specific heat capacities of binary and ternary oxides in this system are required to generate thermodynamic descriptions using the CALPHAD method. Additionally, heat capacity data can be used to support development of thermal management systems for the lithium ion batteries based on these materials. In this study, differential scanning calorimetry was used to measure the heat capacities of the binary copper oxides and of the ternary LiCu2O2. The heat capacity of CuO was measured from 323 to 773 K and that of Cu2O was measured from 973 to 1273 K. The heat capacity of CuO is in good agreement with literature data. However, the heat capacity of Cu2O is slightly lower than that calculated using CALPHAD-based thermodynamic descriptions of the Cu-O system but higher than that determined using ab initio calculations. Although the synthesis of single phase LiCu2O2 is difficult because of the mixed oxidation states of Cu, our heat capacity measurements show that the constituent additivity method can be used to estimate the heat capacity of LiCu2O2.
引用
收藏
页码:650 / 657
页数:7
相关论文
共 50 条
[41]   High-temperature heat capacity of Y2Cu2O5 [J].
L. T. Denisova ;
L. G. Chumilina ;
V. M. Denisov ;
S. D. Kirik ;
S. A. Istomin .
Physics of the Solid State, 2014, 56 :922-925
[42]   High-temperature heat capacity of Dy2Cu2O5 [J].
V. M. Denisov ;
L. T. Denisova ;
L. G. Chumilina ;
S. D. Kirik ;
N. V. Belousova .
Physics of the Solid State, 2013, 55 :1826-1828
[43]   High-temperature heat capacity of Sc2Cu2O5 [J].
L. T. Denisova ;
Yu. F. Kargin ;
L. G. Chumilina ;
V. M. Denisov ;
S. D. Kirik .
Inorganic Materials, 2014, 50 :482-484
[44]   Heat capacity and thermodynamic functions of Na2MoO4 in the temperature range 0-300 K [J].
Gavrichev, K. S. ;
Smirnova, N. N. ;
Ryumin, M. A. ;
Tyurin, A. V. ;
Gurevich, V. M. ;
Komissarova, L. N. .
THERMOCHIMICA ACTA, 2007, 463 (1-2) :41-43
[45]   Low-temperature heat capacities of MgAl2O4 and spinels of the MgCr2O4-MgAl2O4 solid solution [J].
Klemme, Stephan ;
Ahrens, Martin .
PHYSICS AND CHEMISTRY OF MINERALS, 2007, 34 (02) :59-72
[46]   Low-Temperature Heat Capacities and Thermodynamic Functions of α-Bi2O3 [J].
Ke Li ;
Liping Li ;
Quan Shi ;
Tao Feng ;
Nan Yin ;
Huimin Yan ;
Zhe Tan ;
Guangshe Li .
Russian Journal of Physical Chemistry A, 2022, 96 :834-841
[47]   A study of Bi2Al4O9 heat capacity in the range 298-1000 K [J].
Denisov, V. M. ;
Irtyugo, L. A. ;
Denisova, L. T. ;
Kirik, S. D. ;
Kazachenko, E. A. .
PHYSICS OF THE SOLID STATE, 2012, 54 (06) :1138-1140
[48]   Thermodynamic properties of neodymium silicates at high temperature (298.15-1273K) and thermodynamic reassessment of the Nd2O3-SiO2 system [J].
Wei, Wenjie ;
Li, Shu ;
Tan, Minkai ;
Zhang, Boya ;
Cao, Zhanmin .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2024, 87
[49]   Thermodynamic Properties of Er2O3 • 2ZrO2 in the Range 6-1400 K [J].
Gagarin, P. G. ;
Tyurin, A. V. ;
Guskov, V. N. ;
Khoroshilov, A. V. ;
Nikiforova, G. E. ;
Gavrichev, K. S. .
INORGANIC MATERIALS, 2017, 53 (09) :944-949
[50]   Heat capacities and entropies of La2O2CO3 from T = (12 to 300) K and of Nd2O2CO3 from T = (12 to 930) K, and their interpretation [J].
Olafsen, A ;
Fjellvåg, H ;
Stolen, S ;
Atake, T ;
Kawaji, H ;
Matsuo, K .
JOURNAL OF CHEMICAL THERMODYNAMICS, 1999, 31 (04) :433-449