Generalized supersymmetric cosmological term in N=1 supergravity

被引:0
作者
P. K. Concha
E. K. Rodríguez
P. Salgado
机构
[1] Universidad de Concepción,Departamento de Física
[2] Politecnico di Torino,Dipartimento di Scienza Applicata e Tecnologia (DISAT)
[3] Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
Supergravity Models; Gauge Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N = 1, D = 4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.
引用
收藏
相关论文
共 93 条
[1]  
Frieman J(2008)Dark energy and the accelerating universe Ann. Rev. Astron. Astrophys. 46 385-undefined
[2]  
Turner M(2009)Dark energy and its implications for gravity Adv. Sci. Lett. 2 174-undefined
[3]  
Huterer D(2011)Generalized cosmological term from Maxwell symmetries Phys. Rev. D 83 124036-undefined
[4]  
Padmanabhan T(1970)Group-theoretical analysis of elementary particles in an external electromagnetic field. 1. The relativistic particle in a constant and uniform field Nuovo Cim. A 67 267-undefined
[5]  
de Azcarraga JA(1972)The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields Fortsch. Phys. 20 701-undefined
[6]  
Kamimura K(2011)Gauged AdS-Maxwell algebra and gravity Mod. Phys. Lett. A 26 2689-undefined
[7]  
Lukierski J(2009)Semi-simple extension of the (super)Poincaré algebra Adv. High Energy Phys. 2009 234147-undefined
[8]  
Bacry H(2012)A generalized action for (2 + 1)-dimensional Chern-Simons gravity J. Phys. A 45 255207-undefined
[9]  
Combe P(2006)Expanding Lie (super)algebras through Abelian semigroups J. Math. Phys. 47 123512-undefined
[10]  
Richard JL(2008)Eleven-dimensional gauge theory for the M algebra as an Abelian semigroup expansion of Eur. Phys. J. C 54 675-undefined