Quantum Group of Isometries in Classical and Noncommutative Geometry

被引:0
作者
Debashish Goswami
机构
[1] Indian Statistical Institute,Stat
来源
Communications in Mathematical Physics | 2009年 / 285卷
关键词
Dirac Operator; Quantum Group; Noncommutative Geometry; Compact Quantum Group; Spectral Triple;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. The idea of ‘quantum families’ (due to Woronowicz and Soltan) are relevant to our construction. A number of explicit examples are given and possible applications of our results to the problem of constructing quantum group equivariant spectral triples are discussed.
引用
收藏
相关论文
共 27 条
[1]  
Banica T.(2005)Quantum automorphism groups of small metric spaces Pacific J. Math. 219 27-51
[2]  
Banica T.(2005)Quantum automorphism groups of homogeneous graphs J. Funct. Anal. 224 243-280
[3]  
Bichon J.(2003)Quantum automorphism groups of finite graphs, Proc Amer. Math. Soc. 131 665-673
[4]  
Chakraborty P.S.(2003)Probability and geometry on some noncommutative manifolds J Operator Theory 49 185-201
[5]  
Goswami D.(2003)Equivariant spectral triples on the quantum K Theory 28 107-126
[6]  
Sinha K.B.(2004)(2) group J. Inst. Math. Jussieu 3 17-68
[7]  
Chakraborty P.S.(2005)Cyclic cohomology, quantum group symmetries and the local index formula for SU Commun. Math. Phys. 259 729-759
[8]  
Pal A.(2006)(2) Asian J. Math. 10 115-126
[9]  
Connes A.(1999)The Dirac operator on SU Commun. Math. Phys. 203 119-184
[10]  
Dabrowski L.(1998)(2) Sci. Paris 327 553-558