Deep learning-based cross-sensor domain adaptation for fault diagnosis of electro-mechanical actuators

被引:1
|
作者
Siahpour S. [1 ]
Li X. [1 ]
Lee J. [1 ]
机构
[1] Department of Mechanical Engineering, University of Cincinnati, Cincinnati
基金
英国科研创新办公室;
关键词
Deep learning; Domain adaptation; Electro-mechanical actuator; Fault diagnosis; Transfer learning;
D O I
10.1007/s40435-020-00669-0
中图分类号
学科分类号
摘要
Recently, the development of intelligent data-driven machinery fault diagnosis methods have received significant attention. In most studies, the training and testing data are assumed to be collected from the same sensor. However, in real practice, due to the mounting limitation and sensor malfunctioning, it cannot be generally guaranteed to obtain the data from the same sensor location at all times. The testing and training data can be possibly from different sensor locations. Consequently, different data distributions exist, which remarkably deteriorates the data-driven model performance in different scenarios. In order to address this issue, this paper proposes a deep learning-based cross-sensor domain adaptation approach for machinery fault diagnosis. The maximum mean discrepancy is deployed as a distance metric to realize marginal domain fusion. The unlabeled parallel data is further exploited to achieve conditional domain alignment with respect to different machine health conditions. An electro-mechanical actuator dataset is used as a case study for the validation of the proposed method. Different tasks are designed to simulate different cross-sensor domain adaptation problems in fault diagnosis. The experimental results suggest the proposed method achieves higher than 95 % testing accuracies in most tasks, and it offers a promising approach for cross-sensor fault diagnosis problems. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:1054 / 1062
页数:8
相关论文
共 50 条
  • [41] Cross-Category Mechanical Fault Diagnosis Based on Deep Few-Shot Learning
    Xu, Juan
    Shi, Yongfang
    Yuan, Xiaohui
    Lu, Siliang
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27698 - 27709
  • [42] A review on adversarial-based deep transfer learning mechanical fault diagnosis
    Guo, Yu
    Cheng, Ziyi
    Zhang, Jundong
    Sun, Bin
    Wang, YongKang
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [43] A Deep Learning-Based Fault Diagnosis of Leader-Following Systems
    Liu, Xiaoxu
    Lu, Xin
    Gao, Zhiwei
    IEEE ACCESS, 2022, 10 : 18695 - 18706
  • [44] Deep learning-based fault diagnosis of planetary gearbox: A systematic review
    Ahmad, Hassaan
    Cheng, Wei
    Xing, Ji
    Wang, Wentao
    Du, Shuhong
    Li, Linying
    Zhang, Rongyong
    Chen, Xuefeng
    Lu, Jinqi
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 730 - 745
  • [45] CROSS-WORKING CONDITIONS FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON PARTIAL DOMAIN ADAPTATION
    Ma T.
    Sun L.
    Han B.
    Shi Y.
    Deng A.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 479 - 486
  • [46] A new cross-domain approach for bearing fault diagnosis based on multiscale convolutional networks and adversarial subdomain adaptation
    Sun, Haibin
    Zhu, Weilong
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
  • [47] Deep convolutional transfer learning-based structural damage detection with domain adaptation
    Zuoyi Chen
    Chao Wang
    Jun Wu
    Chao Deng
    Yuanhang Wang
    Applied Intelligence, 2023, 53 : 5085 - 5099
  • [48] Domain adaptation-based deep feature learning method with a mixture of distance measures for bearing fault diagnosis
    Zhou, Kaibo
    Cao, Guannan
    Zhang, Kaifeng
    Liu, Jie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [49] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenlong
    APPLIED INTELLIGENCE, 2023, 53 (20) : 24474 - 24491
  • [50] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Bo Wang
    Meng Zhang
    Hao Xu
    Chao Wang
    Wenlong Yang
    Applied Intelligence, 2023, 53 : 24474 - 24491