Deep learning-based cross-sensor domain adaptation for fault diagnosis of electro-mechanical actuators

被引:1
|
作者
Siahpour S. [1 ]
Li X. [1 ]
Lee J. [1 ]
机构
[1] Department of Mechanical Engineering, University of Cincinnati, Cincinnati
关键词
Deep learning; Domain adaptation; Electro-mechanical actuator; Fault diagnosis; Transfer learning;
D O I
10.1007/s40435-020-00669-0
中图分类号
学科分类号
摘要
Recently, the development of intelligent data-driven machinery fault diagnosis methods have received significant attention. In most studies, the training and testing data are assumed to be collected from the same sensor. However, in real practice, due to the mounting limitation and sensor malfunctioning, it cannot be generally guaranteed to obtain the data from the same sensor location at all times. The testing and training data can be possibly from different sensor locations. Consequently, different data distributions exist, which remarkably deteriorates the data-driven model performance in different scenarios. In order to address this issue, this paper proposes a deep learning-based cross-sensor domain adaptation approach for machinery fault diagnosis. The maximum mean discrepancy is deployed as a distance metric to realize marginal domain fusion. The unlabeled parallel data is further exploited to achieve conditional domain alignment with respect to different machine health conditions. An electro-mechanical actuator dataset is used as a case study for the validation of the proposed method. Different tasks are designed to simulate different cross-sensor domain adaptation problems in fault diagnosis. The experimental results suggest the proposed method achieves higher than 95 % testing accuracies in most tasks, and it offers a promising approach for cross-sensor fault diagnosis problems. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:1054 / 1062
页数:8
相关论文
共 50 条
  • [31] Deep Learning-Based Machinery Fault Diagnostics With Domain Adaptation Across Sensors at Different Places
    Li, Xiang
    Zhang, Wei
    Xu, Nan-Xi
    Ding, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (08) : 6785 - 6794
  • [32] Bearing fault diagnosis based on deep dynamic domain adaptation
    Wang J.
    Lei W.
    Liu H.
    Wei L.
    Han D.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (14): : 245 - 250
  • [33] Self-supervised learning-based dual-classifier domain adaptation model for rolling bearings cross-domain fault diagnosis
    Jiang, Quansheng
    Lin, Xiaoshan
    Lu, Xingchi
    Shen, Yehu
    Zhu, Qixin
    Zhang, Qingkui
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [34] Deep prototypical networks based domain adaptation for fault diagnosis
    Wang, Huanjie
    Bai, Xiwei
    Tan, Jie
    Yang, Jiechao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (04) : 973 - 983
  • [35] Deep prototypical networks based domain adaptation for fault diagnosis
    Huanjie Wang
    Xiwei Bai
    Jie Tan
    Jiechao Yang
    Journal of Intelligent Manufacturing, 2022, 33 : 973 - 983
  • [36] Model-based Sensor Fault Detection Algorithm Design for Electro-Mechanical Brake
    Hwang, Woohyun
    Han, Kwangjin
    Huh, Kunsoo
    Jung, Jihyun
    Kim, Myungjune
    2011 14TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2011, : 962 - 967
  • [37] Sparse filtering based domain adaptation for mechanical fault diagnosis
    Zhang, Zhongwei
    Chen, Huaihai
    Li, Shunming
    An, Zenghui
    NEUROCOMPUTING, 2020, 393 : 101 - 111
  • [38] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenlong
    APPLIED INTELLIGENCE, 2023, 53 (20) : 24474 - 24491
  • [39] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Bo Wang
    Meng Zhang
    Hao Xu
    Chao Wang
    Wenlong Yang
    Applied Intelligence, 2023, 53 : 24474 - 24491
  • [40] Mechanical fault diagnosis based on multi-source domain deep transfer learning
    Yang, Shengkang
    Kong, Xianguang
    Wang, Qibin
    Cheng, Han
    Li, Zhongquan
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (09): : 32 - 40