On Cluster Variables of Rank Two Acyclic Cluster Algebras

被引:0
作者
Kyungyong Lee
机构
[1] Wayne State University,Department of Mathematics
来源
Annals of Combinatorics | 2012年 / 16卷
关键词
13F60; 16G20; cluster algebras; quiver representations; generalized Kronecker quiver;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we find an explicit formula for the Laurent expression of cluster variables of coefficient-free rank two cluster algebras associated with the matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\left(\begin{array}{ll} 0 &c \\ -c &0 \end{array}\right)}}$$\end{document}, which manifestly shows that a large number of coefficients are non-negative. As a corollary, we obtain an explicit expression for the Euler-Poincaré characteristics of the corresponding quiver Grassmannians.
引用
收藏
页码:305 / 317
页数:12
相关论文
共 50 条