Completable nilpotent Lie superalgebras

被引:0
作者
Mingzhong Wu
机构
[1] Nankai University,Chern Institute of Mathematics and LPMC
[2] China West Normal University,Department of Mathematics
来源
Frontiers of Mathematics in China | 2015年 / 10卷
关键词
Filiform Lie superalgebra; Heisenberg superalgebra; completable nilpotent Lie superalgebra; maximal torus; complete Lie superalgebra; 17B30; 17B40;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss a class of filiform Lie superalgebras Ln,m. From these Lie superalgebras, all the other filiform Lie superalgebras can be obtained by deformations. We have decompositions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Der_{\bar 0} \left( {L^{n,m} } \right)$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Der_{\bar 1} \left( {L^{n,m} } \right)$$\end{document}. By computing a maximal torus on each Ln,m, we show that Ln,m are completable nilpotent Lie superalgebras. We also view Ln,m as Lie algebras, prove that Ln,m are of maximal rank, and show that Ln,m are completable nilpotent Lie algebras. As an application of the results, we show a Heisenberg superalgebra is a completable nilpotent Lie superalgebra.
引用
收藏
页码:697 / 713
页数:16
相关论文
共 35 条
[1]  
Bermúdez J M A(2003)Completable filiform Lie algebras Linear Algebra Appl 367 185-191
[2]  
Campoamor R(2007)Some deformations of nilpotent Lie superalgebras J Geom Phys 57 1391-1403
[3]  
Bordemann M(1996)On complete Lie superalgebras Commun Korean Math Soc 2 323-334
[4]  
Gómez J R(2004)Some problems concerning to nilpotent Lie superalgebras J Geom Phys 51 473-486
[5]  
Khakimdjanov Y(2008)Infinitesimal deformations of the Lie superalgebra J Geom Phys 58 849-859
[6]  
Navarro R M(1996)Some complete Lie algebras J Algebra 186 807-817
[7]  
Chun J H(1977)Lie superalgebras Adv Math 26 8-96
[8]  
Lee J S(2010)A complete description of all the infinitesimal deformations of the Lie superalgebra J Geom Phys 60 131-141
[9]  
Gómez J R(1994)Some results on complete Lie algebras Comm Algebra 22 5457-5507
[10]  
Khakimdjanov Y(1996)Solvable complete Lie algebras I Comm Algebra 24 4187-4197