Canonical Quantization of the Boundary Wess-Zumino-Witten Model

被引:0
作者
Krzysztof Gawe¸dzki
Ivan T. Todorov
Pascal Tran-Ngoc-Bich
机构
[1] C.N.R.S.,
[2] Laboratoire de Physique,undefined
[3] Institute for Nuclear Research and Nuclear Energy,undefined
[4] 7,undefined
[5] rue Alexis Carrel,undefined
来源
Communications in Mathematical Physics | 2004年 / 248卷
关键词
Quantum Group; Vertex Operator; Wilson Line; Boundary Theory; Conformal Field Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We present an analysis of the canonical structure of the Wess-Zumino-Witten theory with untwisted conformal boundary conditions. The phase space of the boundary theory on a strip is shown to coincide with the phase space of the Chern-Simons theory on a solid cylinder (a disc times a line) with two Wilson lines. This reveals a new aspect of the relation between two-dimensional boundary conformal field theories and three-dimensional topological theories. A decomposition of the Chern-Simons phase space on a punctured disc in terms of the one on a punctured sphere and of coadjoint orbits of the loop group easily lends itself to quantization. It results in a description of the quantum boundary degrees of freedom in the WZW model by invariant tensors in a triple product of quantum group representations. In the action on the space of states of the boundary theory, the bulk primary fields of the WZW model are shown to combine the usual vertex operators of the current algebra with monodromy acting on the quantum group invariant tensors. We present the details of this construction for the spin 1/2 fields in the SU(2) WZW theory, establishing their locality and computing their 1-point functions.
引用
收藏
页码:217 / 254
页数:37
相关论文
共 34 条
[1]  
Affleck undefined(1995)undefined Acta Physica Polonica B 26 1869-undefined
[2]  
Alekseev undefined(1995)undefined Commun. Math. Phys. 169 99-undefined
[3]  
Alekseev undefined(1990)undefined Commun. Math. Phys. 133 353-undefined
[4]  
Balog undefined(2000)undefined Nucl.Phys. B 568 503-undefined
[5]  
Belavin undefined(1984)undefined Nucl. Phys. B 241 333-undefined
[6]  
Bernard undefined(2)undefined Commun. Math. Phys. 127 145-undefined
[7]  
Cappelli undefined(2001)undefined Nucl.Phys. B 599 499-undefined
[8]  
Cardy undefined(1989)undefined Nucl. Phys. B 324 581-undefined
[9]  
Cardy undefined(1991)undefined Phys. Lett. B 559 274-undefined
[10]  
Chu undefined(1995)undefined Nucl. Phys. B 445 145-undefined