Homotopy decomposition of a suspended real toric space

被引:9
作者
Choi S. [1 ]
Kaji S. [2 ]
Theriault S. [3 ]
机构
[1] Department of Mathematics, Ajou University, San 5, Woncheondong, Yeongtonggu, 443-749, Suwon
[2] Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi
[3] School of Mathematics, University of Southampton, Southampton
基金
日本学术振兴会; 新加坡国家研究基金会;
关键词
Homotopy decomposition; Real toric manifold; Real toric spaces;
D O I
10.1007/s40590-016-0090-1
中图分类号
学科分类号
摘要
We give p-local homotopy decompositions of the suspensions of real toric spaces for odd primes p. Our decomposition is compatible with the one given by Bahri, Bendersky, Cohen, and Gitler for the suspension of the corresponding real moment-angle complex, or more generally, the polyhedral product. As an application, we obtain a stable rigidity property for real toric spaces. © 2016, Sociedad Matemática Mexicana.
引用
收藏
页码:153 / 161
页数:8
相关论文
共 12 条
[1]  
Bahri A., Bendersky M., Cohen F.R., Gitler S., The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces, Adv. Math., 225, 3, pp. 1634-1668, (2010)
[2]  
Buchstaber V.M., Panov T.E., Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, 24, (2002)
[3]  
Bjorner A., Wachs M., Welker V., On sequentially Cohen–Macaulay complexes and posets, Israel J. Math., 169, pp. 295-316, (2009)
[4]  
Cai L., On products in a real moment-angle manifold, J. Math. Soc. Japan
[5]  
Carr M., Devadoss S., Coxeter complexes and graph-associahedra, Topol. Appl., 153, pp. 2155-2168, (2006)
[6]  
Choi S., Park H., A new graph invariant arises in toric topology, J. Math. Soc. Japan, 67, 2, pp. 699-720, (2015)
[7]  
Choi S., Park H., On the Cohomology and Their Torsion of Real Toric Objects
[8]  
Davis M.W., Januszkiewicz T., Convex polytopes, coxeter orbifolds and torus actions, Duke Math. J., 62, 2, pp. 417-451, (1991)
[9]  
Denham G., Suciu A., Moment-angle complexes, monomial ideals and Massey products, Pure Appl. Math. Q., 3, pp. 25-60, (2007)
[10]  
Ishida H., Fukukawa Y., Masuda M., Topological toric manifolds, Moscow Math. J., 13, 1, pp. 57-98, (2013)