Self-Assembling Polymer–Nanodiamond Composite Coatings for Vacuum Cathodes

被引:3
|
作者
Lebedev-Stepanov P.V. [1 ,2 ]
Dideykin A.T. [3 ]
Chvalun S.N. [4 ]
Vasiliev A.L. [1 ,4 ]
Grigoryev T.E. [4 ]
Korovin A.N. [4 ]
Belousov S.I. [4 ]
Molchanov S.P. [5 ]
Yurasik G.A. [1 ]
Vul’ A.Y. [3 ]
机构
[1] Center of Photochemistry, Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences, ul. Novatorov 7a/1, Moscow
[2] National Research Nuclear University “Moscow Engineering Physics Institute”, Kashirskoe sh. 31, Moscow
[3] Ioffe Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg
[4] National Research Center “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow
[5] Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow
基金
俄罗斯基础研究基金会;
关键词
field electron emission; nanodiamond coatings; spin-coating technology; thin-film nanocomposites;
D O I
10.1134/S1027451018010287
中图分类号
学科分类号
摘要
The principles of the formation of detonation nanodiamond–polymer thin-film nanocomposites which are promising materials for highly cost-effective field electron vacuum cathodes are studied for the first time. The coatings are deposited onto oriented substrates (Ni, Si) in the processes of self-assembly from an evaporating aqueous solution by the spin-coating technology. Field electron emission studies show that the threshold voltage exceeds values typical for nanocarbon structures by more than ten times. At the same time, it is nearly ten times lower than the work function in macroscopic diamond or graphite. An improvement in the stability of the emission properties of the coating in the presence of polymers in comparison with the deposition of films from a solution of nanodiamond crystallites without polymers is established. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:135 / 138
页数:3
相关论文
共 50 条
  • [31] Self-Assembling Networks
    Barrett, Jeffrey A.
    Skyrms, Brian
    Mohseni, Aydin
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2019, 70 (01): : 301 - 325
  • [32] Self-assembling systems
    Humphreys, Paul
    PHILOSOPHY OF SCIENCE, 2006, 73 (05) : 595 - 604
  • [33] Self-Assembling Biomaterials
    Murphy, William L.
    Collier, Joel H.
    ACTA BIOMATERIALIA, 2009, 5 (03) : 803 - 804
  • [34] Self-assembling nanocaterpillars
    Notman, Nina
    MATERIALS TODAY, 2014, 17 (01) : 5 - 5
  • [35] Self-assembling sieves
    Szabo, T
    O'Leary, BM
    Rebek, J
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1998, 37 (24) : 3410 - 3413
  • [36] A self-assembling retina
    Aschheim, Kathy
    NATURE BIOTECHNOLOGY, 2011, 29 (05) : 409 - 409
  • [37] Self-Assembling Hydrogels
    Chunyu Xu
    Jindřich Kopeček
    Polymer Bulletin, 2007, 58 : 53 - 63
  • [38] Self-assembling hydrogels
    Xu, Chunyu
    Kopecek, Jindrich
    POLYMER BULLETIN, 2007, 58 (01) : 53 - 63
  • [39] Self-assembling corroles
    Orlowski, Rafal
    Vakuliuk, Olena
    Gullo, Maria Pia
    Danylyuk, Oksana
    Ventura, Barbara
    Koszarna, Beata
    Tarnowska, Anna
    Jaworska, Nina
    Barbieri, Andrea
    Gryko, Daniel T.
    CHEMICAL COMMUNICATIONS, 2015, 51 (39) : 8284 - 8287
  • [40] Self-assembling prodrugs
    Cui, Honggang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254