Dirichlet solutions on bordered Riemann surfaces and quasiconformal mappings

被引:0
作者
Hiroshige Shiga
机构
[1] Tokyo Institute of Technology,Department of Mathematics
来源
Journal d’Analyse Mathématique | 2004年 / 92卷
关键词
Harmonic Function; Riemann Surface; Quasiconformal Mapping; Fuchsian Group; Ideal Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider quasiconformal homeomorphisms ϕn ;S0→Sn (n = 1, 2, ...) of a bordered Riemann surfaceS0 and discuss how the Dirichlet solutions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$H_{fo\varphi n^{ - 1} }^{S_n } $$ \end{document} for a continuous functionf on ϖS0 vary when the maximal dilatations of ϕn converge to one. Furthermore, we consider the smoothness of Dirichlet solutions for parameters of the quasiconformal deformation.
引用
收藏
页码:117 / 135
页数:18
相关论文
共 17 条
[1]  
Ahlfors L. V.(1960)Riemann's mapping theorem for variable metrics Ann. of Math. 72 385-404
[2]  
Bers L.(1966)The Hausdorff dimension of singular sets of properly discontinuous groups Amer. J. Math. 88 722-736
[3]  
Beardon A. F.(1961)Holomorphic differentials as functions of moduli Bull. Amer. Math. Soc. 67 206-210
[4]  
Bers L.(1973)Fiber spaces over Teichmüller spaces Acta Math. 130 89-126
[5]  
Bers L.(1964)Teichmüller spaces of groups of the second kind Acta Math. 112 91-97
[6]  
Earle C. J.(1967)Reduced Teichmüller spaces Trans. Amer. Math. Soc. 126 54-63
[7]  
Earle C. J.(1952)Riemann surfaces of infinite genus Ann. of Math. 55 296-317
[8]  
Heins M.(1980)A continuity property of holomorphic differentials under quasiconformal deformations Ann. Acad. Sci. Fenn. Ser. A I Math. 5 207-226
[9]  
Kusunoki Y.(2000)Martin boundary of unlimited covering surfaces J. Analyse Math. 82 55-72
[10]  
Taniguchi M.(1972)Extremal length and harmonic functions on Riemann surfaces Trans. Amer. Math. Soc. 171 1-22