Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion

被引:0
作者
Dongho Chae
Renhui Wan
Jiahong Wu
机构
[1] Chung-Ang University,Department of Mathematics, College of Natural Science
[2] Zhejiang University,School of Mathematics
[3] Oklahoma State University,Department of Mathematics
[4] Chung-Ang University,Department of Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2015年 / 17卷
关键词
Hall-MHD equations; fractional magnetic diffusion; local well-posedness; 35Q35; 35B65; 35Q85; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
The Hall-magnetohydrodynamics (Hall-MHD) equations, rigorously derived from kinetic models, are useful in describing many physical phenomena in geophysics and astrophysics. This paper studies the local well-posedness of classical solutions to the Hall-MHD equations with the magnetic diffusion given by a fractional Laplacian operator, (-Δ)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\Delta)^\alpha}$$\end{document}. Due to the presence of the Hall term in the Hall-MHD equations, standard energy estimates appear to indicate that we need α≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha\ge 1}$$\end{document} in order to obtain the local well-posedness. This paper breaks the barrier and shows that the fractional Hall-MHD equations are locally well-posed for any α>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha > \frac{1}{2}}$$\end{document}. The approach here fully exploits the smoothing effects of the dissipation and establishes the local bounds for the Sobolev norms through the Besov space techniques. The method presented here may be applicable to similar situations involving other partial differential equations.
引用
收藏
页码:627 / 638
页数:11
相关论文
共 14 条
[1]  
Acheritogaray M.(2011)Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system Kinet. Relat. Model. 4 901-918
[2]  
Degond P.(2014)Well-posedness for Hall-magnetohydrodynamics Ann. Inst. H. Poincaré Anal. Non Linéaire 31 555-565
[3]  
Frouvelle A.(2014)On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics J. Differ. Equ. 256 3835-3858
[4]  
Liu J.-G.(2013)On the temporal decay for the Hall-magnetohydrodynamic equations J. Differ. Equ. 255 3971-3982
[5]  
Chae D.(2005)Bifurcation analysis of magnetic reconnection in Hall-MHD systems Physica D 208 59-72
[6]  
Degond P.(2004)Star formation and Hall effect Astrophys. Space Sci. 292 317-323
[7]  
Liu J.-G.(undefined)undefined undefined undefined undefined-undefined
[8]  
Chae D.(undefined)undefined undefined undefined undefined-undefined
[9]  
Lee J.(undefined)undefined undefined undefined undefined-undefined
[10]  
Chae D.(undefined)undefined undefined undefined undefined-undefined