A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters

被引:0
作者
Panagiotis Cheilaris
Elena Khramtcova
Stefan Langerman
Evanthia Papadopoulou
机构
[1] Università della Svizzera italiana,Faculty of Informatics
[2] Université Libre de Bruxelles,Départment d’Informatique
来源
Algorithmica | 2016年 / 76卷
关键词
Voronoi diagram; Hausdorff distance; Randomized incremental construction; Point location; Hierarchical data structure;
D O I
暂无
中图分类号
学科分类号
摘要
In the Hausdorff Voronoi diagram of a family of clusters of points in the plane, the distance between a point t and a cluster P is measured as the maximum distance between t and any point in P, and the diagram is defined in a nearest-neighbor sense for the input clusters. In this paper we consider non-crossing clusters in the plane, for which the combinatorial complexity of the Hausdorff Voronoi diagram is linear in the total number of points, n, on the convex hulls of all clusters. We present a randomized incremental construction, based on point location, that computes this diagram in expected O(nlog2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log ^2{n})$$\end{document} time and expected O(n) space. Our techniques efficiently handle non-standard characteristics of generalized Voronoi diagrams, such as sites of non-constant complexity, sites that are not enclosed in their Voronoi regions, and empty Voronoi regions. The diagram finds direct applications in VLSI computer-aided design.
引用
收藏
页码:935 / 960
页数:25
相关论文
共 46 条
[1]  
Abellanas M(1997)A combinatorial property of convex sets Discrete Comput. Geom. 17 307-318
[2]  
Hernandez G(1994)Dynamic point location in general subdivisions J. Algorithms 17 342-380
[3]  
Klein R(2011)Farthest-polygon Voronoi diagrams Comput. Geom. 44 234-247
[4]  
Neumann-Lara V(1989)Applications of random sampling in computational geometry, II Discrete Comput. Geom. 4 387-421
[5]  
Urrutia J(2002)The Delaunay hierarchy Int. J. Found. Comput. Sci. 13 163-180
[6]  
Baumgarten H(1985)Computing the extreme distances between two convex polygons J. Algorithms 6 213-224
[7]  
Jung H(1989)The upper envelope of piecewise linear functions: algorithms and applications Discrete Comput. Geom. 4 311-336
[8]  
Mehlhorn K(1993)The upper envelope of Voronoi surfaces and its applications Discrete Comput. Geom. 9 267-291
[9]  
Cheong O(1993)Randomized incremental construction of abstract Voronoi diagrams Comput. Geom. 3 157-184
[10]  
Everett H(1996)A compact piecewise-linear Voronoi diagram for convex sites in the plane Discrete Comput. Geom. 15 73-105