Invariant tori and boundedness of solutions of non-smooth oscillators with Lebesgue-integrable forcing term

被引:3
作者
Novaes, Douglas D. [1 ]
Silva, Luan V. M. F. [1 ]
机构
[1] Univ Estadual Campinas UNICAMP, Dept Matemat, Inst Matemat Estat & Computacao Cient IMECC, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 01期
关键词
Invariant tori; Boundedness of solutions; Non-smooth oscillators; Caratheodory differential systems; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS;
D O I
10.1007/s00033-023-02152-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Since Littlewood works in the 1960s, the boundedness of solutions of Duffing-type equations x center dot+g(x)=p(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{x}+g(x)=p(t)$$\end{document} has been extensively investigated. More recently, some researches have focused on the family of non-smooth forced oscillators x center dot+sign(x)=p(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ddot{x}+\textrm{sign}(x)=p(t)$$\end{document}, mainly because it represents a simple limit scenario of Duffing-type equations for when g is bounded. Here, we provide a simple proof for the boundedness of solutions of the non-smooth forced oscillator in the case that the forcing term p(t) is a T-periodic Lebesgue-integrable function with vanishing average. We reach this result by constructing a sequence of invariant tori whose union of their interiors covers all the (t,x,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,x,\dot{x})$$\end{document}-space, (t,x,x)is an element of S1xR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t,x,\dot{x})\in {\mathbb {S}}<^>1\times {\mathbb {R}}<^>2$$\end{document}.
引用
收藏
页数:13
相关论文
共 23 条
  • [1] NONSMOOTH FRAMEWORKS FOR AN EXTENDED BUDYKO MODEL
    Barry, Anna M.
    Widiasih, Esther
    McGehee, Richard
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (06): : 2447 - 2463
  • [2] Brogliato B., 1996, LECT NOTES CONTROL I, V220
  • [3] Chaos in a Periodically Perturbed Second-Order Equation with Signum Nonlinearity
    Burra, Lakshmi
    Zanolin, Fabio
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (02):
  • [4] Sliding Shilnikov connection in Filippov-type predator-prey model
    Carvalho, Tiago
    Novaes, Douglas Duarte
    Goncalves, Luiz Fernando
    [J]. NONLINEAR DYNAMICS, 2020, 100 (03) : 2973 - 2987
  • [5] Dieckerhoff R., 1987, ANN SCUOLA NORM-SCI, V4, P79
  • [6] Functions with Average and Bounded Motions of a Forced Discontinuous Oscillator
    Enguica, Ricardo
    Ortega, Rafael
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1185 - 1198
  • [7] DIFFERENTIAL-EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDES
    HU, SC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 154 (02) : 377 - 390
  • [8] Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side
    Jacquemard, A.
    Teixeira, M. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) : 2003 - 2009
  • [9] Jeffrey M.R., 2018, The mathematics of switches, decisions and other discontinuous behaviour
  • [10] Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator
    Kowalczyk, P.
    Piiroinen, P. T.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (08) : 1053 - 1073