Actions affines sur les arbres réels

被引:0
作者
Liousse I. [1 ]
机构
[1] Lab. d'Arithmetique-Geometrie-A., C.N.R.S. U.M.R. 8524, Université Lille I
关键词
D O I
10.1007/s002090100258
中图分类号
学科分类号
摘要
We first study affine actions on real trees in general; we show that, except for some degenerate cases, the isometric action of the commutators group determines the affine action of the whole group. We then give examples of free affine actions of groups which cannot act freely and isometrically on real trees.
引用
收藏
页码:401 / 429
页数:28
相关论文
共 32 条
  • [21] Morgan J., Otal J.P., Relative growth of closed geodesics on a surface under varying hyperbolic structures, Comm. Math. Helvetici, 68, pp. 171-208, (1993)
  • [22] Morgan J., Shalen P., Valuation, trees, and degeneration of hyperbolic structures I, Ann. Math, 122, pp. 398-476, (1985)
  • [23] Morgan J., Shalen P., Valuation, trees, and degeneration of hyperbolic structures II, III, Ann. Math, 126, pp. 403-519, (1988)
  • [24] Morgan J., Shalen P., Free actions of surface groups on ℝ-trees, Topology, 30, pp. 143-154, (1991)
  • [25] Otal J.P., Le Théorème d'Hyperbolisation, pour les Variétés Fibrées de Dimension 3, 235, (1997)
  • [26] Paulin F., Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. Ec. Norm. Sup. IV, Ser. 30, 2, pp. 147-167, (1997)
  • [27] Serre J.P., 46, (1983)
  • [28] Shalen P., Dendrology of Groups: An Introduction, Essays in Group Theory, 8, (1987)
  • [29] Shalen P., Dendrology and its appplications, Group theory from a geometrical viewpoint, World Scientific, 8, (1991)
  • [30] Skora R., Splittings on surfaces, Bull. AMS, 23, pp. 85-90, (1990)