Actions affines sur les arbres réels

被引:0
作者
Liousse I. [1 ]
机构
[1] Lab. d'Arithmetique-Geometrie-A., C.N.R.S. U.M.R. 8524, Université Lille I
关键词
D O I
10.1007/s002090100258
中图分类号
学科分类号
摘要
We first study affine actions on real trees in general; we show that, except for some degenerate cases, the isometric action of the commutators group determines the affine action of the whole group. We then give examples of free affine actions of groups which cannot act freely and isometrically on real trees.
引用
收藏
页码:401 / 429
页数:28
相关论文
共 32 条
  • [1] Alperin R., Bass H., Lengh functions of group actions on Λ-trees, Combinatorial group theory and topology, Ann. Math. Studies, 11, (1987)
  • [2] Bestvina M., Feighn M., Stable actions of groups on real trees, Inv. Math., 121, pp. 287-321, (1995)
  • [3] Bestvina M., Feighn M., Outer Limits, (1992)
  • [4] Bestvina M., Handel M., Train tracks for automorphisms of free groups, Ann. Math., 135, pp. 1-51, (1992)
  • [5] Cohen M.M., Lustig M., Very small actions on ℝ-trees and Dehn twist automorphisms, Topology, 34, 3, pp. 575-617, (1995)
  • [6] Culler M., Morgan J., Groups actions on ℝ-trees, Lond. Math. Soc., 55, pp. 571-604, (1987)
  • [7] Culler M., Vogtmann K., Moduli of graphs and outer automorphisms of free groups, Invent. Math., 84, pp. 91-119, (1986)
  • [8] Fathi A., Laudenbach F., Poenaru V., Travaux de Thurston sur les surfaces, Astérisque Soc. Math., pp. 66-67, (1979)
  • [9] Gaboriau D., Levitt G., Paulin F., Pseudogroups of isometrics of ℝ and Rips' theorem on free actions on ℝ-trees, Israel Jour. of Math., 87, pp. 403-428, (1994)
  • [10] Gaboriau D., Levitt G., Paulin F., Pseudogroups of isometries of ℝ and reconstruction on free actions on ℝ-trees, Erg. Theo. and Dyn. Syst., 15, pp. 633-652, (1995)