Chordal Deletion is Fixed-Parameter Tractable

被引:0
作者
Dániel Marx
机构
[1] Budapest University of Technology and Economics,Department of Computer Science and Information Theory
来源
Algorithmica | 2010年 / 57卷
关键词
Chordal graphs; Fixed-parameter tractability; Chordal deletion;
D O I
暂无
中图分类号
学科分类号
摘要
It is known to be NP-hard to decide whether a graph can be made chordal by the deletion of k vertices or by the deletion of k edges. Here we present a uniformly polynomial-time algorithm for both problems: the running time is f(k)⋅nα for some constant α not depending on k and some f depending only on k. For large values of n, such an algorithm is much better than trying all the O(nk) possibilities. Therefore, the chordal deletion problem parameterized by the number k of vertices or edges to be deleted is fixed-parameter tractable. This answers an open question of Cai (Discrete Appl. Math. 127:415–429, 2003).
引用
收藏
页码:747 / 768
页数:21
相关论文
共 34 条
[1]  
Bodlaender H.L.(1993)A tourist guide through treewidth Acta Cybern. 11 1-21
[2]  
Cai L.(1996)Fixed-parameter tractability of graph modification problems for hereditary properties Inf. Process. Lett. 58 171-176
[3]  
Cai L.(2003)Parameterized complexity of vertex colouring Discrete Appl. Math. 127 415-429
[4]  
Dehne F.(2007)An Theory Comput. Syst. 41 479-492
[5]  
Fellows M.(1961)(2 Acta Math. Acad. Sci. Hung. 12 131-173
[6]  
Langston M.(2004)) FPT algorithm for the undirected feedback vertex set problem J. Comput. Syst. Sci. 68 285-302
[7]  
Rosamond F.(2006)Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen J. Comput. Syst. Sci. 72 1386-1396
[8]  
Stevens K.(1999)Computing crossing numbers in quadratic time SIAM J. Comput. 28 1906-1922
[9]  
Gallai T.(2003)Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization Internet Math. 1 37-55
[10]  
Grohe M.(1980)Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs J. Comput. Syst. Sci. 20 219-230