Ordinal solution of open games and analytic sets

被引:0
作者
Ashok Maitra
机构
[1] Indian Statistical Institute,Dean’s Office
[2] Indian Statistical Institute,undefined
来源
Sankhya A | 2010年 / 72卷 / 1期
关键词
Analytic set; coanalytic set; constituents; prewell-ordering; open games; Primary 02K30, 04A15; Secondary 28A05;
D O I
暂无
中图分类号
学科分类号
摘要
We use the ordinal solution of open games to define constituents of analytic and coanalytic sets. Various properties of theses constituents are established and it is shown that they behave just as regularly as the classical constituents of Luzin and Sierpinski.
引用
收藏
页码:19 / 36
页数:17
相关论文
共 9 条
[1]  
Addison J.W.(1968)Some consequences of the axiom of definable determinateness Proc. Natl. Acad. Sci. USA 59 708-712
[2]  
Moschovakis Y.N.(1967)Infinite games and analytic sets Proc. Natl. Acad. Sci. USA 58 1836-1837
[3]  
Blackwell D.(1936)Sur les theorems de separation dans la theorie des ensembles Fund. Math. 26 183-191
[4]  
Kuratowski K.(1923)Sur un ensemble non measurable (B) Journal de Mathematiques II 53-72
[5]  
Lusin N.(1933)Sur les proprieties des constituantes des ensembles analytiques Fund. Math. 21 20-28
[6]  
Sierpinski W.(1926)Sur une propriete des ensembles (A) Fund. Math. 8 362-369
[7]  
Selivanowski E.(1933)Sur les constituantes des ensembles analytiques Fund. Math. 12 29-34
[8]  
Sierpinski W.(undefined)undefined undefined undefined undefined-undefined
[9]  
Sierpinski W.(undefined)undefined undefined undefined undefined-undefined